共查询到20条相似文献,搜索用时 15 毫秒
1.
Karol Bociek Sara Ferluga Mario Mardirossian Monica Benincasa Alessandro Tossi Renato Gennaro Marco Scocchi 《The Journal of biological chemistry》2015,290(32):19933-19941
The human cathelicidin LL-37 is a multifunctional host defense peptide with immunomodulatory and antimicrobial roles. It kills bacteria primarily by altering membrane barrier properties, although the exact sequence of events leading to cell lysis has not yet been completely elucidated. Random insertion mutagenesis allowed isolation of Escherichia coli mutants with altered susceptibility to LL-37, pointing to factors potentially relevant to its activity. Among these, inactivation of the waaY gene, encoding a kinase responsible for heptose II phosphorylation in the LPS inner core, leads to a phenotype with decreased susceptibility to LL-37, stemming from a reduced amount of peptide binding to the surface of the cells, and a diminished capacity to lyse membranes. This points to a specific role of the LPS inner core in guiding LL-37 to the surface of Gram-negative bacteria. Although electrostatic interactions are clearly relevant, the susceptibility of the waaY mutant to other cationic helical cathelicidins was unaffected, indicating that particular structural features or LL-37 play a role in this interaction. 相似文献
2.
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic alpha-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as (15)N, (13)C and/or (2)H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C(18) column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the (15)N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform (15)N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies. 相似文献
3.
Asaf Sol Yaniv Skvirsky Rizan Nashef Katya Zelentsova Tal Burstyn-Cohen Edna Blotnick Andras Muhlrad Gilad Bachrach 《The Journal of biological chemistry》2014,289(33):22926-22941
Host defense peptides play an important host-protective role by their microcidal action, immunomodulatory functions, and tissue repair activities. Proteolysis is a common strategy of pathogens used to neutralize host defense peptides. Here, we show that actin, the most abundant structural protein in eukaryotes, binds the LL-37 host defense peptide, protects it from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis, and enables its antimicrobial activity despite the presence of the proteases. Co-localization of LL-37 with extracellular actin was observed in necrotized regions of samples from oral lesions. Competition assays, cross-linking experiments, limited proteolysis, and mass spectrometry revealed that LL-37 binds by specific hydrophobic interactions to the His-40–Lys-50 segment of actin, located in the DNase I binding loop. The integrity of the binding site of both LL-37 and actin is a prerequisite to the binding. Our results demonstrate that actin, presumably released by dead cells and abundant in infected sites, might be utilized by the immune system to enhance spatio-temporal immunity in an attempt to arrest infection and control inflammation. 相似文献
4.
Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding. 相似文献
5.
OH-CATH是眼镜王蛇中新发现的cathelicidin家族抗菌肽.它在1%NaCI存在的条件下对多种细菌都有较强的抗菌活性,同时,在高浓度下对人红细胞无溶血活性.OH-CATH足开发新型抗菌药物的优良模板.蜊明OH-CATH的作用机理及其对微生物的选择性,对研发以OH-CATH为先导结构的药物研发有十分重要的意义.本文利用扫描电镜以及透射电镜对OH-CATH与革兰氏阴性菌一大肠杆菌ATCC 25922相互作用的效应研究.结果揭示:OH-CATH对大肠杆菌的作用涉及到3个步骤.首先,OH-CATH借助其带正电的氨基酸残基附着到细菌带负电荷的细胞壁:然后,附着的OH-CATH在达剑一定浓度后发生聚集,以孔道彤成的方式破坏细菌的膜结构;最终,由十细菌膜的损坏,膜的渗透性被破坏,胞内内含物释放造成细菌死亡. 相似文献
6.
Zhongshuang Hu Taisuke Murakami Kaori Suzuki Hiroshi Tamura Kyoko Kuwahara-Arai Toshiaki Iba Isao Nagaoka 《PloS one》2014,9(1)
Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role in innate immune defense. Notably, human cathelicidin LL-37 exhibits the protective effect on the septic animal models. Thus, in this study, to elucidate the mechanism for the protective action of LL-37 on sepsis, we utilized LPS (lipopolysaccharide) and ATP (adenosine triphosphate) as a PAMP and a DAMP, respectively, and examined the effect of LL-37 on the LPS/ATP-induced pyroptosis of macrophage-like J774 cells. The data indicated that the stimulation of J774 cells with LPS and ATP induces the features of pyroptosis, including the expression of IL-1β mRNA and protein, activation of caspase-1, inflammasome formation and cell death. Moreover, LL-37 inhibits the LPS/ATP-induced IL-1β expression, caspase-1 activation, inflammasome formation, as well as cell death. Notably, LL-37 suppressed the LPS binding to target cells and ATP-induced/P2X7-mediated caspase-1 activation. Together these observations suggest that LL-37 potently inhibits the LPS/ATP-induced pyroptosis by both neutralizing the action of LPS and inhibiting the response of P2X7 to ATP. Thus, the present finding may provide a novel insight into the modulation of sepsis utilizing LL-37 with a dual action on the LPS binding and P2X7 activation. 相似文献
7.
Xiao-Lan Jing Xue-Gang Luo Wen-Jing Tian Li-Hui Lv Yong Jiang Nan Wang Tong-Cun Zhang 《Current microbiology》2010,61(3):197-202
Plectasin is a defensin-like antimicrobial peptide isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella. Plectasin showed marked antibacterial activity in vitro against Gram-positive bacteria, especially Streptococcus pneumoniae, including strains resistant to conventional antibiotics. Plectasin could kill the sensitive strain as efficaciously as vancomycin
and penicillin and without cytotoxic effects on mammalian cell viability. In order to establish a bacterium-based plectasin
production system, in the present study, the coding sequence of plectasin was optimized, and then cloned into pET32a (+) vector
and expressed as a thioredoxin (Trx) fusion protein in Escherichia coli. The soluble fusion protein collected from the supernatant of the cell lysate was separated by Ni2+-chelating affinity chromatography. The purified protein was then cleaved by Factor Xa protease to release mature plectasin.
Final purification was achieved by Ni2+-chelating chromatography again. The recombinant plectasin exhibited the same antimicrobial activity as reported previously.
This is the first study to describe the expression of plectasin in E. coli expression system, and these works might provide a significant foundation for the following production or study of plectasin,
and contribute to the development and evolution of novel antimicrobial drugs in clinical applications. 相似文献
8.
Claudia M. Müller Anna ?berg Jurate Strasevi?iene Levente Em?dy Bernt Eric Uhlin Carlos Balsalobre 《PLoS pathogens》2009,5(2)
Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues. 相似文献
9.
10.
High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli
Ján Krahulec Marcela Hyršová Stanislav Pepeliaev Jana Jílková Zbyněk Černý Jana Machálková 《Applied microbiology and biotechnology》2010,88(1):167-175
The human antimicrobial peptide LL-37 is a cationic peptide with antimicrobial activity against both Gram-positive and Gram-negative
microorganisms. This work describes the development of an expression system based on Escherichia coli capable of high production of the recombinant LL-37. The fusion protein Trx-LL-37 was expressed under control of T7 promoter.
The expression of T7 polymerase in the E. coli strain constructed in this work was controlled by regulation mechanisms of the arabinose promoter. The expression plasmid
was stabilized by the presence of parB locus which ensured higher homology of the culture during cultivation without antibiotic selection pressure. This system
was capable of producing up to 1 g of fusion protein per 1 l of culture. The subsequent semipreparative HPLC allowed us to
isolate 40 mg of pure LL-37. LL-37 showed high antimicrobial activity against both Gram-negative and Gram-positive microorganisms.
Its activity against Candida albicans was practically nonexistent. Minimal Inhibition Concentration (MIC) determined for E. coli was 1.65 μM; for Staphylococcus aureus 2.31 μM, and for Enterococcus faecalis 5.54 μM. The effects of cathelicidin on E. coli included the ability to permeabilize both cell membranes, as could be observed by the increase of β-galactosidase activity
in extracellular space in time. Physiological changes were studied by scanning electron microscopy; Gram-positive microorganisms
did not show any visible changes in cell shapes while the changes observed on E. coli cells were evident. The results of this work show that the herein designed expression system is capable of producing adequate
quantities of active human antimicrobial peptide LL-37. 相似文献
11.
Allison Jones Miriam Ge?rg Lisa Maudsdotter Ann-Beth Jonsson 《Journal of bacteriology》2009,191(12):3861-3868
Pathogenic bacteria have evolved numerous mechanisms to evade the human immune system and have developed widespread resistance to traditional antibiotics. We studied the human pathogen Neisseria meningitidis and present evidence of novel mechanisms of resistance to the human antimicrobial peptide LL-37. We found that bacteria attached to host epithelial cells are resistant to 10 μM LL-37 whereas bacteria in solution or attached to plastic are killed, indicating that the cell microenvironment protects bacteria. The bacterial endotoxin lipooligosaccharide and the polysaccharide capsule contribute to LL-37 resistance, probably by preventing LL-37 from reaching the bacterial membrane, as more LL-37 reaches the bacterial membrane on both lipooligosaccharide-deficient and capsule-deficient mutants whereas both mutants are also more susceptible to LL-37 killing than the wild-type strain. N. meningitidis bacteria respond to sublethal doses of LL-37 and upregulate two of their capsule genes, siaC and siaD, which further results in upregulation of capsule biosynthesis.Neisseria meningitidis (meningococci) is a gram-negative, aerobic diplococci that is an obligate human pathogen. Infections caused by N. meningitidis are an important cause of morbidity and mortality worldwide. Meningococci colonize the nasopharyngeal mucosa of approximately 10% of healthy individuals but can cross epithelial and endothelial cell barriers and enter the bloodstream, causing septicemia, with mortality rates of 20 to 50% (4). Meningitis occurs when bacteria transverse the blood cerebrospinal fluid, causing a fatal outcome in 15 to 20% of infected patients. Bacterial adherence is initially mediated by type IV pili with host cell receptors. PilT is the molecular motor responsible for pili retraction, which mediates a tight interaction. An important virulence factor of N. meningitidis is the endotoxin lipooligosaccharide (LOS), which is located in the bacterial outer cell membrane. Meningococcal LOS is composed of a conserved inner core of membrane-associated lipid A (16) to which variable α- and β-chains attach (13).As one of many first lines of defense against invading pathogens like Neisseria bacteria, epithelial cells produce antimicrobial peptides (AMPs). These peptides are effector molecules for the innate immune response, with both direct antimicrobial activity and a broad spectrum of immunomodulatory functions (18, 22). LL-37 is the single known human cathelicidin and is expressed in various immune cells as well as in epithelial cells of inflamed skin, mouth, tongue, esophagus, and lungs. It has been shown that LL-37 interacts with bacterial membranes through both electrostatic and hydrophobic effects. It remains unknown whether LL-37 ultimately kills bacteria by formation of torroidal pores as described by Henzler Wildman et al. (11) or by detergent-like disintegration of the membrane via the carpet model as described by Shai (24), but increasing membrane permeability, osmotic swelling, and loss of the vital proton gradient are important characteristics of the killing process (21). Membrane interactions of LL-37 (and other AMPs) appear to be highly selective for the negative surface charge on prokaryotic membranes. However, it has been shown by Tzeng et al. (28) that meningococci regulate AMP attack via mechanisms that include lipid A modification and an efflux pump. LL-37 toxicity for eukaryotic cells remains low, probably because eukaryotic cell membranes do not have a negative net charge (31).In order to further investigate the bactericidal activity of LL-37, various Neisseria strains were examined for their susceptibility to LL-37. Our results show that LL-37 exhibits potent killing activity against N. meningitidis, whereas adhesion to host cells, LOS, and the capsule was found to contribute to resistance to LL-37. Neisseria bacteria can respond to sublethal doses of LL-37 to increase capsule production. 相似文献
12.
The presence of adhesins is arguably an important determinant of pathogenicity for Uropathogenic Escherichia coli (UPEC). Antimicrobial susceptibilities were tested by agar dilution method, fifteen adhesin genes were detected by polymerase chain reaction, and multilocus sequence typing (MLST) was analyzed in 70 UPEC isolates and 41 commensal E. coli strains. Extended-spectrum β-lactamase (ESBL) was determined with confirmatory test. The prevalence of ESBL-producers in UPEC (53%, 37/70) was higher than the commensal intestinal isolates (7%, 3/41), and 97% (36/37) of the ESBL-producing UPEC harbored bla
CTX-M genes. afa was present in 36% (10/28) UPEC isolates from recurrent lower urinary tract infection (UTI), and none in the acute pyelonephritis, acute uncomplicated cystitis or commensal strains (P<0.0001). papG was detected in 28% (20/70) of UPEC isolates, while 5% (2/41) of the commensal strains were papG positive (P = 0.0025), and the prevalence of papG was significantly higher in acute pyelonephritis group (71%) than the other two UTI groups (P<0.0001). The prevalence of flu, yqi, yadN and ygiL was significantly higher in UPEC isolates than in the commensal strains. ESBL-producing UPEC showed a lower prevalence of adhesin genes compared with non-ESBL-producing strains. The MLST profiles were different between UPEC and commensal strains, with ST131 (19%, 13/70) and ST10 (20%, 8/41) being the most common MLSTs, respectively. This study demonstrated that several adhesin genes were more prevalent in UPEC isolates than in commensal E. coli, and afa may be associated with recurrent lower UTI whereas papG is more frequently associated with acute pyelonephritis. 相似文献
13.
抗菌肽GK1在大肠杆菌中的融合表达 总被引:1,自引:1,他引:1
为高效表达抗菌肽GK1并避免GK1的高抗菌活性对大肠杆菌宿主菌的致命影响, 将经改造后的人胰岛素原(mhPI)与GK1的融合基因(mhPI-GK1)克隆到表达载体pET28a中, 构建出表达质粒pET28a-mhPI-GK1, 转化至大肠杆菌BL21(DE3)中进行表达。融合蛋白在大肠杆菌中以包涵体形式表达, 表达量占菌体总蛋白的20%。经CNBr裂解、阳离子交换层析和RP-HPLC纯化后, 每升发酵液可获得5.7 mg纯度大于97%的重组GK1。质谱检测显示重组GK1的分子量为2794.0 D, 抑菌活性实验表明纯化后的重组GK1和化学合成GK1具有相同的抗菌活性。为利用基因工程方法大规模生产GK1奠定了基础。 相似文献
14.
15.
根据GenBank CAA86115中的LL-37氨基酸序列, 选择毕赤酵母偏好密码子, 采用SOE方法合成了人源抗菌肽LL-37基因。所合成的LL-37基因全长为141 bp, 并在其N端引入kex2裂解位点, 以保证表达抗菌肽具有天然N端。基因克隆入pPICZa-A质粒, 构建分泌型重组酵母表达载体pPICZa-A-LL-37。pPICZa-A-LL-37经SacⅠ酶切线性化后电转化导入毕赤酵母菌株X-33。PCR鉴定为阳性的酵母转化子经甲醇诱导分泌LL-37于发酵上清液, 其表达量为206 mg/L。表达产物LL-37耐热性强, 在100℃条件下40 min内抗菌活性不变, 煮沸3 h以上仍具有活性。琼脂糖孔穴扩散法检测显示LL-37对多种革兰氏阴性菌和阳性菌均具有很好的抑制活性, 其对金黄色葡萄球菌 CowanⅠ(Staphylococcus aureus)、致病性大肠杆菌K99(Enteropathogenic E.coli)和鸡白痢沙门氏菌(Salmonella pullorum)的最小抑菌浓度(Minimal Inhibitory Concentration, MIC)分别为1.56 mg/mL、3.12 mg/mL和1.56 mg/mL。 相似文献
16.
人源抗菌肽LL-37在毕赤酵母中的高效表达及其活性检测 总被引:1,自引:0,他引:1
根据GenBank CAA86115中的LL-37氨基酸序列,选择毕赤酵母偏好密码子,采用SOE 方法合成了人源抗菌肽LL-37基因.所合成的LL-37基因全长为141 bp,并在其N端引入kex2裂解位点,以保证表达抗茵肽具有天然N端.基因克隆入pPICZα-A质粒,构建分泌型重组酵母表达载体pPICZα-A-LL-37.pPICZα-A-LL-37经Sac Ⅰ酶切线性化后电转化导入毕赤酵母菌株X-33.PCR鉴定为阳性的酵母转化子经甲醇诱导分泌LL-37于发酵上清液,其表达量为206mg/L.表达产物LL-37耐热性强,在100℃条件下40 min内抗茵活性不变,煮沸3 h以上仍具有活性.琼脂糖孔穴扩散法检测显示LL-37对多种革兰氏阴性茵和阳性菌均具有很好的抑制活性,其对金黄色葡萄球菌Cowan I (Staphylococcus aureus)、致病性大肠杆菌K99(Enteropathogenic E.coli)和鸡白痢沙门氏菌(Salmonella pullorum)的最小抑菌浓度(Minimal Inhibitory Concentration,MIC)分别为1.56 μg/mL、3.12 μg/mL和1.56 μg/mL. 相似文献
17.
18.
家蚕抗菌肽-死亡素杂合肽基因在大肠杆菌中的克隆与表达 总被引:4,自引:0,他引:4
近年来的研究发现 ,抗菌蛋白在生物体非专一性防御系统有着重要的作用 ,已有数十种具有抗菌活性的多肽被分离 ,这些多肽可大致分为 3类 ,即含分子内二硫桥的抗菌肽 ;具有双亲α 螺旋结构的抗菌肽 ;以及富含某种氨基酸残基的抗菌肽[1 ] ,一般来说 ,这些抗菌肽具有分子量小 ,稳定性好 ,无细胞毒性 ,抗菌谱广等特点。多种抗菌肽的一级结构和二级结构已经确定[2 ] ,但作用机理仍不明了。一般认为可能存在两种作用模式 ,即 1)通过肽 脂膜相关作用杀菌 ;2 )通过受体介导的识别过程起作用[1 ] 。CecropinB是一种较早从家蚕中分离得到 ,由 … 相似文献
19.
Sathiah Thennarasu Anmin Tan Rajesh Penumatchu Deborah L. Heyl 《Biophysical journal》2010,98(2):248-257
A 21-residue peptide segment, LL7-27 (RKSKEKIGKEFKRIVQRIKDF), corresponding to residues 7-27 of the only human cathelicidin antimicrobial peptide, LL37, is shown to exhibit potent activity against microbes (particularly Gram-positive bacteria) but not against erythrocytes. The structure, membrane orientation, and target membrane selectivity of LL7-27 are characterized by differential scanning calorimetry, fluorescence, circular dichroism, and NMR experiments. An anilinonaphthalene-8-sulfonic acid uptake assay reveals two distinct modes of Escherichia coli outer membrane perturbation elicited by LL37 and LL7-27. The circular dichroism results show that conformational transitions are mediated by lipid-specific interactions in the case of LL7-27, unlike LL37. It folds into an α-helical conformation upon binding to anionic (but not zwitterionic) vesicles, and also does not induce dye leakage from zwitterionic lipid vesicles. Differential scanning calorimetry thermograms show that LL7-27 is completely integrated with DMPC/DMPG (3:1) liposomes, but induces peptide-rich and peptide-poor domains in DMPC liposomes. 15N NMR experiments on mechanically aligned lipid bilayers suggest that, like the full-length peptide LL37, the peptide LL7-27 is oriented close to the bilayer surface, indicating a carpet-type mechanism of action for the peptide. 31P NMR spectra obtained from POPC/POPG (3:1) bilayers containing LL7-27 show substantial disruption of the lipid bilayer structure and agree with the peptide's ability to induce dye leakage from POPC/POPG (3:1) vesicles. Cholesterol is shown to suppress peptide-induced disorder in the lipid bilayer structure. These results explain the susceptibility of bacteria and the resistance of erythrocytes to LL7-27, and may have implications for the design of membrane-selective therapeutic agents. 相似文献
20.
An immobilization scheme for bacterial cells is described, in which the antimicrobial peptide cecropin P1 was used to trap Escherichia coli K-12 and O157:H7 cells on microtiter plate well surfaces. Cecropin P1 was covalently attached to the well surfaces, and E. coli cells were allowed to bind to the peptide-coated surface. The immobilized cells were detected colorimetrically with an anti-E. coli antibody-horseradish peroxidase conjugate. Binding curves were obtained in which the signal intensities were dependent upon the cell concentration and upon the amount of peptide attached to the well surface. After normalization for the amount of peptide coupled to the surface and the relative binding affinity of the antibody for each strain, the binding data were compared, which indicated that there was a strong preference for E. coli O157:H7 over E. coli K-12. The cells could be immobilized reproducibly at pH values ranging from 5 to 10 and at ionic strengths up to 0.50 M. 相似文献