首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Dendrochronologia》2014,32(2):127-136
We examined tree-ring growth in a naturally seeded old-growth slash pine (Pinus elliottii Engelm. var. elliottii) stand in coastal Georgia to develop growth-climate models and reconstruct past climatic conditions during the mid and late 1800s. We generated earlywood, latewood, and annual ring chronologies dating to 1818, based on 40 cores collected from 22 trees at the Wormsloe State Historic Site near Savannah, Georgia, with 28 cores dating before 1900. We used correlation and response function analysis to relate tree-ring growth to climatic variables and El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) indices. Water availability (represented by PDSI and secondarily, precipitation) was the most important factor determining growth for all three series, with latewood and September PDSI showing the strongest relationship. Like other species in the southeastern United States, moisture in the late winter and spring was crucial for earlywood development, while latewood and annual growth was enhanced in cooler, wetter summers, particularly with hurricanes bringing rainfall late in the growing season. Earlywood growth was greater following +ENSO (winter) phases and −NAO (winter) phases – for both indices, times when the northern Georgia coast is often relatively cool and wet. A verified split-calibration regression model based on latewood ring growth showed temporal stability and accounted for 27% of the variation in the observed September PDSI record from 1895 to 2009 (mean reduction in error = 0.21 and coefficient of efficiency = 0.05). During the instrument record, the timing of reconstructed and observed dry and moist periods matched closely; prior to that, reconstructed PDSI values indicated drought from the early 1840s to late 1850s – a period of unusually low latewood growth.  相似文献   

2.
We have studied the presence of the foliar endophtye of Picea glauca (white spruce) Phialocephala scopiformis CBS 120377 and its affect on the growth of Choristoneura fumiferana (spruce budworm). Here we examine the transmission of this fungus from 50 trees planted in a test field site to 250 P. glauca seedlings planted under the emerging canopies. After 3 y, the endophyte spread to 40 % of these trees (now 20–30 cm) with an average rugulosin (an anti-insect toxin) concentration of 1 μg g?1. All woody plants within 2 m of the test trees were collected. These were all shown to be negative for P. scopiformis except for some spruce seedlings that arose from seeds (natural generation). This is positive evidence for the horizontal transmission of P. scopiformis and its apparent specificity to P. glauca under field conditions.  相似文献   

3.
A collection of subfossil wood of Pinus sylvestris (Scots pine) was exposed to X-ray densitometry. The collection of 64 samples from the southern boreal forest zone was dendrochronologically cross-dated to a.d. 673-1788. Growth characteristics were determined by performing density profiles including the following parameters: minimum density, earlywood and latewood boundary density, maximum density, earlywood width, earlywood density, latewood width, latewood density, annual ring width and annual ring density. Seven out of the nine parameters were found to contain non-climatic growth trends and six were found to be heteroscedastic in their variance. Tree-specific records were indexed, to remove the non-climatic growth trends and stabilize the variance, and combined into nine parameter-specific tree-ring chronologies. Growth characteristics of the pines changed in parallel with the generally agreed climatic cooling from the Medieval Warm Period to the Little Ice Age: pine tree-rings showed decreasing maximum densities from the period a.d. 975-1150 to a.d. 1450–1625. A concomitant change in the intra-annual growth characteristics was detected between these periods. The findings indicate that not only the trees growing near the species’ distributional limits are sensitive to large-scale climatic variations but also the trees growing in habitats remote from the timberline have noticeably responded to past climate changes.  相似文献   

4.
杨柳  秦春  李刚 《应用生态学报》2021,32(10):3636-3642
树轮气候学是研究过去气候变化的重要手段之一。以往研究表明,树轮密度是生长季温度的重要代用资料。本文建立了祁连山西段青海云杉132~135年的树轮最大密度年表、树轮最小密度年表、树轮晚材平均密度年表和树轮早材平均密度年表,比较了不同密度年表指示的最优气候信号及其季节组合,评估了其作为气候代用资料的潜力与价值。结果表明:树轮晚材平均密度和树轮早材平均密度对于树木生长季气候信号的响应远低于树轮最大密度和树轮最小密度;树轮早材平均密度和树轮最小密度与帕尔默干旱指数有很强的联系,表明树轮早材平均密度和树轮最小密度有成为干旱代用指标的潜力。  相似文献   

5.
Effects of a gypsy moth attack on the productivity of Larix sibirica on tree-ring width were analyzed in a case study of a mountain site in the western Khentey in the northern Mongolian forest-steppe ecotone. A major aim of the study was to assess whether reduced productivity by gypsy moth herbivory could contribute to fluctuations of the forest edge to the steppe in larch-dominated woodlands. In the year of the infestation, larch trees at the forest edge lost 90% of their needles and latewood formation was strongly reduced. However, earlywood formation was widely completed before the gypsy moth attack and, therefore, total tree-ring width was not below the average of the five years prior to infestation. In the two years following the gypsy moth invasion, annual stem increment was strongly reduced. Trees growing 30–100 m inside the forest showed a much weaker response of tree-ring widths to the gypsy moth infestation consistent with significantly higher defoliation at forest edge than in the forest interior. Old trees exhibited a stronger growth decline than middle-aged trees, indicating higher infestation of dominant, exposed trees, which are thought to be better accessible to the wind-dispersed gypsy moth larvae hatching in the early growing season on the steppe. Under the current climate, occasional growth reductions are thought to be of little effect on the performance of L. sibirica, as fast-growing competitors of other tree species, which are not or hardly affected by gypsy moth, are absent.  相似文献   

6.
The precise demarcation between earlywood and latewood is important for the detailed analysis of intra-annual tree ring features. Different techniques based on visual assessment, wood anatomy analysis and X-ray densitometry have been developed and are currently used for this purpose. Depending on the chosen method, tree species and environmental conditions, the results can significantly vary. Thus, it is important to determine the technique optimal for a particular research. Here, we investigated Norway spruce (Picea abies) tree rings to examine the agreement among the following demarcation methods: (1) direct visual assessment, (2) Mork’s index (anatomical definition of the transition from earlywood to latewood based on cell wall-lumen ratio) and (3) fixed and floating density thresholds applied to intra-ring density profiles. The aim was to modify both the Mork’s criterion and density thresholds on the basis of reference values given by visual identification of earlywood/latewood transition. A total of 231 tree rings were analysed by all methods. Our results showed that the usage of floating threshold (defined for each ring separately based on density profiles) is more reliable in comparison with fixed threshold (the same threshold value used for all tree rings and samples). Statistical analysis revealed the best correspondence between visual identification of earlywood/latewood transition and demarcation based on the standard Mork’s index and the floating density threshold derived as 80 % of maximum latewood density. In terms of Mork’s index calibration, the results showed that to determine latewood cells in Norway spruce trees growing in temperate conditions, it is sufficient to use an index value equal to 0.83. The results are applicable for the studied spruce population growing in a temperate climate. The methodology itself, however, is universal and can help to calibrate criteria for earlywood-latewood demarcation under specific conditions.  相似文献   

7.

Key message

An outbreak of the western spruce budworm temporarily modifies cellular wood anatomy of stem wood in natural and mature Douglas-fir stands impacting wood quality properties.

Abstract

Western spruce budworm (Choristoneura occidentalis Freeman) is a widespread and destructive defoliator of commercially important coniferous forests in western North America. In British Columbia, Canada, Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is the most important and widely distributed host. Permanent sample plots were established at a number of locations in southern interior at the beginning of a severe western spruce budworm outbreak in the 1970s. Two of the sites were sampled in 2012 to determine whether modifications had occurred in the anatomical characteristics of stem wood formed during outbreak years. We determined that rings formed during the western spruce budworm 1976–1980 outbreak had a significantly lower proportion of latewood, reduced mean cell wall thickness and smaller radial cell diameters. While the cellular characteristics of the earlywood remained fairly constant, significant reductions in lumen area occurred in 1978 and 1979 at each site. Our study shows that western spruce budworm outbreaks not only reduce annual radial growth, but also temporarily modify cellular characteristics in latewood cells, which has implications for wood density and quality in Douglas-fir.  相似文献   

8.
Invasive populations of small spruce bark beetle Ips amitinus were first registered in 2019 in the southeast of Western Siberia. In natural stands of Siberian pine (Pinus sibirica Du Tour), several hundred hectares of outbreak foci of the alien bark beetle were identified. In 2020, a local focus of the bark beetle was found in the conifer collection in the arboretum “Kedr” of the Institute of Monitoring Climatic and Ecological Systems SB RAS, 30 km from Tomsk. The bark beetle caused the main damage to the collection of pines. I. amitinus colonized both host plants Scotch pine (Pinus sylvestris L.) and mountain pine (Pinus mugo Turra), which were previously known to it in the native range in Europe, and the local Siberian species Siberian pine (Pinus sibirica Du Tour), Siberian spruce (Picea obovata Ledeb.) and introduced Far Eastern Korean pine (Pinus koraiensis Sieb. et Zucc.). Demographic characteristics of I. amitinus studied on damaged trees indicate its high reproduction potential in Siberia. The bark beetle outbreak focus was suppressed; however, this plantation requires further annual monitoring of pest abundance and distribution, both to preserve the scientific dendroecological field station and to study the implementation of sential plant conception in relation to the invasion of I. amitinus.  相似文献   

9.
A 50-year tree-ring δ18O chronology of Abies spectabilis growing close to the tree line (3850 m asl) in the Nepal Himalaya is established to explore its dendroclimatic potential. Response function analysis with ambient climatic records revealed that tree-ring δ18O is primarily governed by rainfall during the monsoon season (June–September), and the regression model accounts for 35% of the variance in rainfall. Extreme dry years identified in instrumental weather data are detected in the δ18O chronology. Further, tree-ring δ18O is much more sensitive to rainfall fluctuations than other tree-ring parameters such as width and density typically used in dendroclimatology. Correlation analyses with Niño 3.4 SST reveal time-dependent behavior of ENSO–monsoon relationships.  相似文献   

10.
《Dendrochronologia》2014,32(2):153-161
The use of tree-ring data in carbon cycle research has so far been limited because traditional study designs are not geared toward quantifying forest carbon accumulation. Existing studies that assessed biomass increment from tree rings were often confined to individual sites and used inconsistent sampling schemes. We applied a consistent biomass-oriented sampling design at five managed forest sites located in different climate zones to assess the annual carbon accumulation in above-ground woody tissues (i.e. stems and branches) and its climate response. Radial growth and biometric measurements were combined to reconstruct the annual biomass increment in individual trees and upscaled to the site level. In addition to this, we estimated that 32–60 trees are required at these five sites to robustly quantify carbon accumulation rates. Tree dimensions and growth rates varied considerably among sites as a function of differing stand density, climatic limitations, and management interventions. Accordingly, mean site-level carbon accumulation rates between 65 g C m−2 y−1 and 225 g C m−2 y−1 were reconstructed for the 1970–2009 period. A comparison of biomass increment with the widely used basal area increment (BAI) revealed very similar growth trends but emphasized the merits of biomass assessments due to species-specific BAI/biomass relationship. Our study illustrates the benefits and challenges of combining tree-ring data with biometric measurements and promotes the consistent application of a standardized sampling protocol across large spatial scales. It is thus viewed as a conceptual basis for future use of tree-ring data to approach research questions related to forest productivity and the terrestrial carbon balance.  相似文献   

11.
Response of climate warming on tree-ring formation has attracted much attention during recent years. However, most studies are based on statistical analysis, lacking understanding of tree-physiological processes, especially in the mountainous regions of the Tibetan Plateau (TP). Herein, we firstly use an updated new version of the tree-ring process-based Vaganov-Shashkin model (VS-oscilloscope) to simulate tree-ring formation and its relationships with climate factors during the past six decades. Our analyses covered 341 sampled trees growing within elevations ranging from 2750 to 4575 m a.s.l. at five sampling sites across the TP. Simulated tree-ring width series are significantly (p < 0.01) correlated with actual tree-ring width chronologies during their common interval periods. Starting dates of tree-ring formation are determined by temperature at all five sampling sites. After the initiation of tree stem cambial activity, soil moisture content has a significant effect on tree radial growth. Ending dates of cambial activity are driven by temperature over the whole study region. Simulated results indicate differences between wide and narrow tree-rings are mostly induced by soil moisture content, especially during the first half of the growing season, when effects from temperature variations are minor. Interestingly, we detected significantly (p < 0.001) increased relative growth rates due to higher soil moisture content after the year 1985 at the five sampling sites. However, the variability of mean relative growth rates due to temperature is negligible before and after that. Based on the successful application of VS-oscilloscope modeling on the high-elevation tree stands on the TP, our study provides a new perspective on tree radial growth process and their varying relationships to climate factors during the past six decades.  相似文献   

12.
Stationary (time-stable) relationships between a tree-ring proxy and climatic drivers are a prerequisite for using tree rings as paleo-climatological archives, but non-stationarity has been detected worldwide. Here we use a classical, temperature-sensitive treeline site in Western Siberia to specifically test the influence of micro-site conditions (wet versus dry) on the stationarity of climate-growth relationships in three co-existing conifer species: Larix sibirica Ledeb., Picea obovata Ledeb., and Pinus sibirica DuTour. We test two commonly used tree-ring proxies, annual tree-ring width (TRW) and maximum latewood density (MXD), using moving windows and the bootstrapped transfer function stability test (BTFS). Summer temperature is the main driver of tree growth in all three species, but non-stationarities exist in all species and both tree-ring proxies. For TRW, we found stationarity only for larch from both micro-sites, while for MXD, we found stationarity for spruce from both micro-sites, and for pine from the wet micro-site. Micro-site variability did not seem to affect stationarity in any systematic way. We highlight the necessity to systematically test the influence of different methods of stationarity tests, since BTFS was more sensitive than moving-window analysis. Taken together, our results underscore the importance of testing the assumption of stationarity for diverse micro-sites, different species and proxies at all sites prior to any tree-ring based temperature reconstruction, since even within one site results can be drastically different.  相似文献   

13.
The ingression of woody plants into the grassy layer of savannas and grasslands has become a global concern. The increase of woody plants has been primarily attributed over grazing, fire and more recently to the increase of atmospheric CO2. We used long-term observations and analyses to assess changes in woody vegetation in Ithala Game Reserve (IGR), South Africa. Textural analysis of aerial photographs was used to detect changes in woody vegetation, from 1943 to 2007 in Ithala Game Reserve (IGR), South Africa. Daily rainfall data from 1905 to 2009 were used in a time-series analysis to determine if rainfall patterns have changed. The time-series analysis showed that the low magnitude (0–10 mm) rainfall events decreased from 1916 to 2009 and high magnitude rainfall events increased (10–20 and >20 mm). The mean annual rainfall increased from ~700 to ~850 mm from the 1930s to the 2000s. This change in rainfall was a key factor in the increase in woody vegetation from 1943 to 2009. We also used field data from the same reserve collected over 30 years to assess the increases in tree cover. Tree cover and density increased significantly by 32.5% and 657.9 indiv ha?1 respectively, over 64 years. Before the proclamation of IGR in 1972, increases in woody vegetation from 1943 were non-significant. After the proclamation of IGR, herbivore population numbers and spatial distribution influenced the accumulation of grassy biomass required to fuel fires. In areas with reduced fuel loads, the consequential suppression of fire accelerated the rate of woody plant invasion into savannas. The increase in woody vegetation coincided with a decrease in palatable (e.g. Acacia gerrardii and Acacia davyi) and an increase in unpalatable woody plants. The avoidance of the unpalatable trees (e.g. Euclea and Searsia species) by large mammalian herbivores has allowed these trees to increase in density relatively unhindered.  相似文献   

14.
《Dendrochronologia》2014,32(3):266-272
We developed six tree-ring width chronologies of Siberian spruce (Picea obovata) from the low elevation forest of the southern Altay Mountains in northern Xinjiang, China. Although the six chronologies come from different sampling sites, significant correlations existed among the chronologies (r  0.477), and the first principal component (PC1) accounted for 72.2% of total variance over their common period 1825–2010. Correlation response analysis revealed that radial growth of Siberian spruce is mainly limited by a 12-month precipitation starting from July of the previous year to June of the current year. We therefore developed a July–June precipitation reconstruction spanning 1825–2009, which explained 65.5% of the instrumental variance for the period 1962–2009. The information of our precipitation reconstruction suggested that dry conditions existed for the periods 1829–1838, 1852–1855, 1876–1888, 1898–1911, 1919–1923, 1932–1936, 1943–1955, 1963–1968, 1973–1984 and 2007–2009, and wet conditions for the periods AD 1825–1828, 1839–1851, 1856–1875, 1889–1897, 1912–1918, 1924–1931, 1937–1942, 1956–1962, 1969–1972 and 1985–2006. Spatial climate correlation analyses with gridded land surface data revealed that our precipitation reconstruction contains a strong precipitation signal for the Altay Mountain ranges. Our reconstruction agreed with the moisture-sensitive tree ring width series of Siberian larch from the Altay Mountains of Mongolia on a decadal timescale. In addition, in contrast to a drying trend in north central China, a clear wetting trend has occurred in the southern Altay Mountains since 1980s.  相似文献   

15.
Variations in tree-ring structure from pith to bark of mature Norway spruce (Picea abies Karst. (L)) grown under contrasting climate conditions (warm-dry vs. cool-humid) in south-western Germany were investigated. Sample trees were from even-aged stands where no intensive silvicultural treatments had taken place. The cell number (CN), diameter (CD), lumen diameter (CL) and wall thickness (CW) were measured from stem cross-sections taken at breast height. A raw data chronology of each cell parameter was established for the whole annual ring (AR), earlywood (EW), latewood (LW), and transition wood (TW). The long-term trends of the cell parameters were generally non-linear, parameter-specific in AR and EW and similar over sites. Those in LW were site-specific and similar over cell parameters. The variation of the same parameter, expressed by the coefficient of variance (CV), tended to increase from EW towards LW and was clearly higher for CN than for other cell parameters of all tree-ring zones. Trees from the warm-dry site had more LW cells and substantially thicker CW, whereas those from the cool-humid site had larger EW cells. These observed differences are likely due to the hydraulic adaptation mechanisms of trees to different site conditions.  相似文献   

16.
17.
Wild pollinators may benefit Brassica oilseed production in temperate Australia, yet it is not known how the density of potential pollinators varies in these landscapes. In this study we assessed whether the density of feral honeybees, hoverflies (probably 2 species) and native bees (multiple species) in temperate Australian Brassica oilseed crops was related to the composition of the landscape. The density of pollinators was measured at multiple points in six different Brassica oilseed paddocks (20–80 ha) at least 1.75 km apart. Landscape composition at multiple scales (radii 100–2000 m) was determined from GIS layers of Brassica paddocks, woody vegetation and non-woody vegetation, and a derived layer expected to reflect the condition of woody vegetation remnants (the ‘Link’ score). Densities of feral honeybees were higher near the edges of Brassica fields than towards the middle. Densities of feral honeybees were strongly positively associated with the summed ‘Link’ score within 300 m and with the amount of woody vegetation. Densities of native bees and hoverflies were not strongly associated with woody vegetation or with woody vegetation with a high ‘Link’ score. Our results suggest that maximising feral honeybee abundance within paddocks in these landscapes may require smaller paddocks than those typically used, interspersed with habitat beneficial to feral honeybees such as woody vegetation in good condition.  相似文献   

18.
Crude glycerol from the biodiesel industry was used as carbon source for high cell density fed-batch cultivation of Pichia pastoris aiming at producing a chitin–glucan complex (CGC). More than 100 g L?1 biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g g?1 during the batch phase and 0.63 g g?1 during the fed-batch phase. The chitin–glucan complex was recovered from the yeast cell wall by hot alkaline extraction. CGC content in the cell wall was found to be relatively constant throughout the cultivation (18–26%) with a volumetric productivity of 1.28 g L?1 h?1 at the end of the fed-batch phase. The molar ratio of chitin:β-glucan in the extracted biopolymer was 16:84, close to other CGC extracted from Aspergillus biomass. The extracted polymer was characterized by Differential Scanning Calorimetry (DCS) and solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and compared with commercial biopolymers, namely, crab shell chitin and/or chitosan, algal β-glucan (laminarin) and fungal chitin–glucan complex (kiOsmetine).  相似文献   

19.
This study investigates Pb isotope ratios at low concentrations (parts per billion; ppb) in tree rings and soils in the Northern Athabasca Oil Sands Region (NAOSR), western Canada, to evaluate if: (1) climatic conditions influence on tree-ring Pb assimilation; and (2) such low Pb content allows inferring the regional Pb depositional history.Our results reflect the influence of winter snow cover and the importance of minimum temperature and precipitation in spring and summer on the bioavailability of Pb and its passive assimilation by trees in sub-arctic semi-humid climatic conditions. Winter conditions can influence the state of root systems that subsequently impacts the following growth period, while spring and summer conditions likely control microbial processes and water source, and may thus impact Pb assimilation by trees. Thus, the results of tree-ring Pb concentrations show interesting correlation with cumulated snow from November of the previous year to February (ρ = 0.53; P < 0.01; n = 36). Likewise, the 206Pb/207Pb ratios inversely correlate with minimum temperature from April to September (ρ = −0.67; P < 0.01; n = 40) and precipitation from May to August (ρ = −0.42; P < 0.01; n = 36). The isotopic results also suggest that the effects of climatic variations are superimposed by regional industrial Pb deposition: Western North American Aerosols (WNAA) and fugitive dust from the oil sands mining operations appear to be the most likely sources.Importantly, this study suggests that even at low Pb concentrations, tree-ring Pb isotopes are modulated by climatic conditions and potential input of regional and long-range transport of airborne Pb. These interpretations open the possibility of using Pb isotopes as an environmental tool for inferring the pollution history in remote regions, and improving our understanding of its natural cycle through the forest environment.  相似文献   

20.
Zong C  Ma Y  Rong K  Ma J Z  Cheng Z B 《农业工程》2009,29(6):362-366
Cone-cores discarded by Eurasian red squirrels were used to study the habitat selection of Korean pine-seeds hoarding, in forest patch Nos. 16 and 19 in Liangshui Nature Reserve, China. Ten transects with a total length of 15 km were uniformly set, and data from 343 valid samples were collected in a 369 hm2 area. One hundred and eighty four were hoarding samples which were determined according to the cluster analysis based on the number of the cone-cores, while the other 159 were control samples. The principal component analysis, using 11 habitat factors, suggested that the distance from Korean pine forest, forest type, number of Korean pine seedlings, density and type of bush significantly influenced the habitat selection of hoarding by Eurasian red squirrels. The results of Bailey’s method indicated that the squirrels showed (1) preference for natural coniferous forest, natural fir and spruce forest and planted spruce forest; (2) avoidance of planted Korean pine forest and planted larch forest; and (3) random use of natural Korean pine forest. Moreover the distance from the Korean pines in the range of 150–600 m showed no effect on the habitat selection of hoarding by the Eurasian red squirrels. More than 50% of the cone-cores were discarded in either fringe or gap of the Korean pine forest with more cone-cores found at <300 m than at 300 m away (One-Way ANOVA; df = 3, 183, F = 5.76, p = 0.0009). This demonstrated that the Eurasian red squirrels could take the cone-cores out of the Korean pine forest. The density of bushes in samples of hoarding area was significantly lower than that in control samples (Kruskal–Wallis test; df = 1, χ2 = 83.99, p < 0.0001). The number of the Korean pine seedlings in samples of hoarding area was significantly higher than that in the control samples (Kruskal–Wallis test; df = 1, χ2 = 104.13, p < 0.0001). This illustrated that the hoarding habitat favoured the germination of the Korean pine seedlings. In conclusion the behavior of hoarding Korean pine seeds by the Eurasian red squirrels can promote the regeneration and dispersal of the Korean pines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号