首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

While numerous studies have documented evidence for plasticity of the human brain there is little evidence that the human spinal cord can change after injury. Here, we employ a novel spinal fMRI design where we stimulate normal and abnormal sensory dermatomes in persons with traumatic spinal cord injury and perform a connectivity analysis to understand how spinal networks process information.

Methods

Spinal fMRI data was collected at 3 Tesla at two institutions from 38 individuals using the standard SEEP functional MR imaging techniques. Thermal stimulation was applied to four dermatomes in an interleaved timing pattern during each fMRI acquisition. SCI patients were stimulated in dermatomes both above (normal sensation) and below the level of their injury. Sub-group analysis was performed on healthy controls (n = 20), complete SCI (n = 3), incomplete SCI (n = 9) and SCI patients who recovered full function (n = 6).

Results

Patients with chronic incomplete SCI, when stimulated in a dermatome of normal sensation, showed an increased number of active voxels relative to controls (p = 0.025). There was an inverse relationship between the degree of sensory impairment and the number of active voxels in the region of the spinal cord corresponding to that dermatome of abnormal sensation (R2 = 0.93, p<0.001). Lastly, a connectivity analysis demonstrated a significantly increased number of intraspinal connections in incomplete SCI patients relative to controls suggesting altered processing of afferent sensory signals.

Conclusions

In this work we demonstrate the use of spinal fMRI to investigate changes in spinal processing of somatosensory information in the human spinal cord. We provide evidence for plasticity of the human spinal cord after traumatic injury based on an increase in the average number of active voxels in dermatomes of normal sensation in chronic SCI patients and an increased number of intraspinal connections in incomplete SCI patients relative to healthy controls.  相似文献   

2.
3.
Traumatic injury to the spinal cord (SCI) causes death of neurons, disruption of motor and sensory nerve fiber (axon) pathways and disruption of communication with the brain. One of the goals of our research is to promote axon regeneration to restore connectivity across the lesion site. To accomplish this we developed a peripheral nerve (PN) grafting technique where segments of sciatic nerve are either placed directly between the damaged ends of the spinal cord or are used to form a bridge across the lesion. There are several advantages to this approach compared to transplantation of other neural tissues; regenerating axons can be directed towards a specific target area, the number and source of regenerating axons is easily determined by tracing techniques, the graft can be used for electrophysiological experiments to measure functional recovery associated with axons in the graft, and it is possible to use an autologous nerve to reduce the possibility of graft rejection. In our lab we have performed both autologous (donor and recipient are the same animal) and heterologous (donor and recipient are different animals) grafts with comparable results. This approach has been used successfully in both acute and chronic injury situations. Regenerated axons that reach the distal end of the PN graft often fail to extend back into the spinal cord, so we use microinjections of chondroitinase to degrade inhibitory molecules associated with the scar tissue surrounding the area of SCI. At the same time we have found that providing exogenous growth and trophic molecules encourages longer distance axonal regrowth into the spinal cord. Several months after transplantation we perform a variety of anatomical, behavioral and electrophysiological tests to evaluate the recovery of function in our spinal cord injured animals. This experimental approach has been used successfully in several spinal cord injury models, at different levels of injury and in different species (mouse, rat and cat). Importantly, the peripheral nerve grafting approach is effective in promoting regeneration by acute and chronically injured neurons.Download video file.(224M, mp4)  相似文献   

4.
研究脂多糖(LPS)诱导的炎症反应对运动神经元的损伤作用及其机制.采用SD乳鼠脊髓器官型培养,分为单纯培养液组和不同浓度LPS组,应用免疫组化、酶活性测定、电镜等技术衡量神经元损伤程度.对LPS组分别给予细胞内钙离子螯合剂BAPTA-AM和NADPH氧化酶抑制剂apocynin,观察运动神经元数量和形态变化.结果显示LPS可以引起剂量和时间依赖性的运动神经元数量减少和培养液中乳酸脱氢酶含量增高,运动神经元超微结构改变明显,中间神经元损伤相对较轻.运动神经元缺乏钙网膜蛋白表达,而BAPTA-AM减轻运动神经元损伤,提示钙离子缓冲能力较低是其较易受损的原因之一.LPS可以引起NADPH氧化酶活性增高,而apocynin对LPS引起的运动神经元丢失有保护作用,说明NADPH氧化酶在炎症介导的运动神经元损伤中发挥着关键作用.  相似文献   

5.
Spinal cord injury (SCI) induces a series of endogenous biochemical changes that lead to secondary degeneration, including apoptosis. p53-mediated mitochondrial apoptosis is likely to be an important mechanism of cell death in spinal cord injury. However, the signaling cascades that are activated before DNA fragmentation have not yet been determined. DNA damage-induced, p53-activated neuronal cell death has already been identified in several neurodegenerative diseases. To determine DNA damage-induced, p53-mediated apoptosis in spinal cord injury, we performed RT-PCR microarray and analyzed 84 DNA damaging and apoptotic genes. Genes involved in DNA damage and apoptosis were upregulated whereas anti-apoptotic genes were downregulated in injured spinal cords. Western blot analysis showed the upregulation of DNA damage-inducing protein such as ATM, cell cycle checkpoint kinases, 8-hydroxy-2′-deoxyguanosine (8-OHdG), BRCA2 and H2AX in injured spinal cord tissues. Detection of phospho-H2AX in the nucleus and release of 8-OHdG in cytosol were demonstrated by immunohistochemistry. Expression of p53 was observed in the neurons, oligodendrocytes and astrocytes after spinal cord injury. Upregulation of phospho-p53, Bax and downregulation of Bcl2 were detected after spinal cord injury. Sub-cellular distribution of Bax and cytochrome c indicated mitochondrial-mediated apoptosis taking place after spinal cord injury. In addition, we carried out immunohistochemical analysis to confirm Bax translocation into the mitochondria and activated p53 at Ser392. Expression of APAF1, caspase 9 and caspase 3 activities confirmed the intrinsic apoptotic pathway after SCI. Activated p53 and Bax mitochondrial translocation were detected in injured spinal neurons. Taken together, the in vitro data strengthened the in vivo observations of DNA damage-induced p53-mediated mitochondrial apoptosis in the injured spinal cord.  相似文献   

6.
7.
Embryonic neural stem cell (ENSC) transplantation is used experimentally for the improvement of spinal cord repair following spinal cord injury (SCI). However, the effects of such intervention on oxidative stress and cell death remain unknown. We used in vivo Comet assay in the acute and chronic SCI groups compared with the SCI+ENSC transplantation groups of experimental rats in order to evaluate DNA damage in the spinal cord. Chronic SCI resulted in the generation of oxidative DNA damage in the spinal cord brain and kidneys, as indicated by high Comet assay parameters, including the percentage of DNA in the tail (T%, or TD), tail moment (TM), and tail length (TL). The DNA damage levels significantly decreased after ENSC transplantation in the spinal cords of acute and chronic SCI groups within the lesion site and rostrally and caudally to the injury, and in the brains and kidneys of the chronic SCI group. Thus, ENSC transplantation is found to be an effective tool for limitation of DNA damage following spinal cord injury.  相似文献   

8.
目的:研究大鼠坐骨神经结扎模型钙结合蛋白Parvalbumin(PV)在脊髓的时空变化规律,为探讨其在神经再生中的作用与机制提供实验依据。方法:SD大鼠随机分为假手术对照组和坐骨神经结扎组,实验组结扎后分别存活1,3,7,14或21d,采用免疫组化结合图像分析技术观察PV在脊髓的表达变化。结果:在对照组,PV免疫阳性神经元主要分布于腰髓背角Ⅱ层,Ⅲ~Ⅵ层只观察到少量散在分布的PV样阳性神经元,脊髓前角Ⅷ层和Ⅸ层内也可见少量多极的大型阳性神经元。术后各时间点PV样阳性神经元表达下降,14d下降最显著,21d表达有所上升,但还是低于7d组。脊髓后角PV免疫阳性产物灰度值测定结果显示:术后14d后角PV表达最低,与对侧和对照组以及1、3d组相比有统计学意义(P<0.05)。结论:坐骨神经结扎后PV表达变化呈现一定的时空模式,为进一步揭示PV在神经系统疾病中的作用提供实验依据。  相似文献   

9.
10.
Neurochemical Research - Spinal cord injury (SCI) is a severe disorder of the CNS leading to tissue damage and disability. Because it is critical to understand the pathological processes, it is...  相似文献   

11.
Stem cell research has been attained a greater attention in most fields of medicine due to its potential for many incurable diseases through replacing or helping the regeneration of damaged cells or tissues. Here, we demonstrated the functional recovery and structural connection of the central nervous system pathway innervating the sciatic nerve after total transection of the spinal cord followed by the transplantation of human neural stem cells (hNSC) in the injured rat spinal cord site. The limb function of hNSC-treated group recovered dramatically compared with that in the sham group by Basso–Beattie–Bresnahan (BBB) scores. Transplanted hNSC differentiated into astrocytes and neurons in the injured site. In addition, immunohistochemistry for growth-associated protein 43 showed axonal regeneration in the injured spinal cord site. The pseudorabies viral-Ba (PRV-Ba) tracing method revealed that transplanted hNSC and their differentiated neurons showed positive labeling after sciatic nerve injection. In addition, the PRV-Ba labeling was also observed in several nuclei in the brain innervating the sciatic nerve. This result implies that the rat CNS motor pathway could be reconstructed by hNSC transplantation, and it may contribute to the functional recovery of the limb.  相似文献   

12.
Nitroxyl anion or its conjugate acid (NO-/HNO) and nitric oxide (NO) may both have pro-oxidative and cytotoxic properties. Superoxide dismutase (SOD) enzyme has been shown to convert reversibly HNO to NO. Mutations found in the SOD enzyme in some familial amyotrophic lateral sclerosis (ALS) patients affect redox properties of the SOD enzyme in a manner, which may affect the equilibrium between NO and HNO. Therefore, we studied the effects of HNO releasing compound, Angeli's salt (AS), on both motor and sensory functions after intrathecal administration in the lumbar spinal cord of a male rat. These functions were measured by rotarod, spontaneous activity, paw- and tail-flick tests. In addition, we compared the effect of AS to NO releasing papanonoate, old AS solution and sulphononoate in the motor performance test. The effect of intrathecal delivery of AS on the markers of the spinal cord injury and oxidative/nitrosative stress were further studied.

Results: Freshly prepared AS (5 or 10?μmol), but not papanonoate, caused a marked decrease in the rotarod performance 3–7 days after the intrathecal administration. The peak motor deficiency was noted 3 days after AS (5?μmol) delivery. Old, degraded, AS solution and nitrous oxide releasing sulphononoate did not decrease motor performance in the rotarod test. AS did not affect the sensory stimulus evoked responses as measured by the paw-flick and tail-flick tests. Immunohistological examination revealed that AS caused injury related changes in the expression of glial fibrillary acidic protein (GFAP), fibroblast growth factor (FGF-2) and laminins in the spinal cord. Moreover, AS increased nitrotyrosine immunoreactivity in the spinal motor neurons.

Therefore, we conclude that AS, but not NO releasing papanonoate, causes motor neuron injury but does not affect the function of sensory nerves in behavioural tests.  相似文献   

13.
Proteins from extensor digitorum longus (EDL), plantaris (PLN), and soleus (SOL) muscles of adult, female rats were examined by high resolution two-dimensional gel electrophoresis up to 4 weeks following spinal cord transection. The electrophoretograms were analyzed by computer imaging and densitometry. Reproducible and significant changes in the relative concentrations of several proteins in each muscle type were detected. Whereas changes involving the largest number of proteins were observed in SOL, changes in EDL and PLN were also detected. In SOL, approximately 50% of the altered proteins increased in concentration and the remaining decreased: Actin and myosin light chains LCF-1 and LCF-2 were among those proteins whose concentrations increased, whereas myosin light chains LCS-1 and LCS-2 were among those proteins whose concentrations decreased. The present findings regarding the reversal in myosin light chain composition provide biochemical support for previously published data on changes in contractile properties of muscles following spinalization. In EDL, the relative concentration of only one protein was elevated in a time-dependent manner. The concentrations of two protein species in PLN were increased following cord transection. These findings provide new biochemical markers on the effects of spinal cord on gene expression in specific hindlimb skeletal muscles.  相似文献   

14.
15.
Weight-bearing stepping, without supraspinal re-connectivity, can be attained by treadmill training in an animal whose spinal cord has been completely transected at the lower thoracic level. Repair of damaged tissue and of supraspinal connectivity/circuitry following spinal cord injury in rat can be achieved by specific cell elimination with radiation therapy of the lesion site delivered within a critical time window, 2-3 weeks postinjury. Here we examined the effects of training in the repaired spinal cord following clinical radiation therapy. Studies were performed in a severe rat spinal cord contusion injury model, one similar to fracture/crush injuries in humans; the injury was at the lower thoracic level and the training was a combined hindlimb standing and stepping protocol. Radiotherapy, in a similar manner to that reported previously, resulted in a significant level of tissue repair/preservation at the lesion site. Training in the irradiated group, as determined by limb kinematics tests, resulted in functional improvements that were significant for standing and stepping capacity, and yielded a significant direct correlation between standing and stepping performance. In contrast, the training in the unirradiated group resulted in no apparent beneficial effects, and yielded an inverse correlation between standing and stepping performance, e.g., subject with good standing showed poor stepping capacity. Further, without any training, a differential functional change was observed in the irradiated group; standing capacity was significantly inhibited while stepping showed a slight trend of improvement compared with the unirradiated group. These data suggest that following repair by radiation therapy the spinal circuitries which control posture and locomotor were modified, and that the beneficial functional modulation of these circuitries is use dependent. Further, for restoring beneficial motor function following radiotherapy, training seems to be crucial.  相似文献   

16.
Implanted neural stem cells (NSC) could improve neurological functions following spinal cord injury (SCI), but the optimal conditions for NSC transplantation are largely unknown, especially in transected spinal cord. This study investigated the effect and fate of NSC engrafted into spinal cords at different locations and time points following T9 spinal cord transection. Engrafted NSC could survive and migrate in host spinal cords. Significant improvement in hindlimb locomotor functions associated with NSC survival was found in rats receiving NSC transplantation in the spinal cords rostral to the transection site at the subacute stage (7 days post operation), compared with those caudal to the transection site at the acute stage (at the time of injury). At 4 weeks post operation, CD68 immunohistochemical staining confirmed that macrophages were less in rostrally transplanted sites and in subacute groups than seen in caudal and acute transplanted rats. The present findings indicated that NSC transplantation into spinal cords rostral to transection site at the subacute stage is an optimal strategy for engrafted NSC survival and host behavioral improvement. It therefore would be available to the usage of NSC for the treatment of SCI in the future clinic trial.  相似文献   

17.
Following trauma of the adult brain or spinal cord the injured axons of central neurons fail to regenerate or if intact display only limited anatomical plasticity through sprouting. Adult cortical neurons forming the corticospinal tract (CST) normally have low levels of the neuronal calcium sensor-1 (NCS1) protein. In primary cultured adult cortical neurons, the lentivector-induced overexpression of NCS1 induces neurite sprouting associated with increased phospho-Akt levels. When the PI3K/Akt signalling pathway was pharmacologically inhibited the NCS1-induced neurite sprouting was abolished. The overexpression of NCS1 in uninjured corticospinal neurons exhibited axonal sprouting across the midline into the CST-denervated side of the spinal cord following unilateral pyramidotomy. Improved forelimb function was demonstrated behaviourally and electrophysiologically. In injured corticospinal neurons, overexpression of NCS1 induced axonal sprouting and regeneration and also neuroprotection. These findings demonstrate that increasing the levels of intracellular NCS1 in injured and uninjured central neurons enhances their intrinsic anatomical plasticity within the injured adult central nervous system.  相似文献   

18.
目的初步探讨骨髓间充质干细胞诱导为神经细胞,及其移植对大鼠脊髓半横断损伤神经功能恢复和运动的影响。方法贴壁培养法分离培养大鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs),大鼠脊髓匀浆上清诱导第3代向神经细胞分化,经免疫组化鉴定分化后细胞的性质。制备大鼠半横断脊髓损伤模型,脊髓损伤局部注射BrdU标记诱导后的神经细胞。细胞移植5周后观察移植细胞在脊髓内存活分布情况。结果倒置显微镜下可见MSCs呈纺锤形和多角形,有1~2个核仁,经脊髓匀浆上清诱导后,发出数个细长突起,并交织成网,诱导后的细胞表达Nestin,可推测诱导后的细胞为MSCs源神经细胞。5周后移植的MSCs在宿主损伤脊髓内聚集并存活,表达MAP-2、NF、GFAP与对照组比较有统计学意义(P0.05)。大鼠运动功能较移植前有所改善。结论MSCs经脊髓匀浆上清诱导后移植治疗大鼠半横断脊髓损伤可使运动功能得到改善。  相似文献   

19.
Abstract: It has been suggested that the degeneration of motor neurons in amyotrophic lateral sclerosis is a consequence of excitotoxicity resulting from a loss of synaptosomal glutamate uptake. The role of synaptosomal glutamate uptake in the pathogenesis of motor neuron disease was studied in the Mnd mouse. Glutamate uptake in spinal-cord synaptosomes declined in parallel with the onset of behavioral deficits in Mnd mice but lagged considerably behind the appearance of pathology in motor neurons. Glutamate uptake did not decline significantly in corpus striatum, and GABA uptake did not change significantly in either spinal cord or striatum. The presence of pronounced histopathological changes before the loss of glutamate uptake suggests that the decline of glutamate uptake is a consequence rather than the primary cause of motor neuron disease in the Mnd mouse.  相似文献   

20.
Loss of Ascorbic Acid from Injured Feline Spinal Cord   总被引:2,自引:2,他引:2  
Feline spinal cord contains 0.97 mM ascorbic acid, as measured by the dinitrophenylhydrazine method. Greater than 90% is maintained in the reduced form. When functioning normally, the CNS conserves its ascorbic acid with a turnover rate of 2% per h. Following contusion injury severe enough to produce paraplegia, ascorbic acid is rapidly lost from injured spinal tissue. Thus, ascorbic acid is decreased 30% by 1 h and 50% by 3 h following injury. Oxidized ascorbic acid is increased at 1, but not 3, h following impact. As a consequence of its many functions in CNS, loss of ascorbic acid may contribute to derangements in spinal cord function following injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号