首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous mutations arise not only in exponentially growing bacteria but also in non-dividing or slowly dividing stationary-phase cells. In the latter case mutations are called adaptive or stationary-phase mutations. High spontaneous mutability has been observed in temperature sensitive Escherichia coli dnaQ49 strain deficient in 3'-->5' proofreading activity assured by the e subunit of the main replicative polymerase, Pol III. The aim of this study was to evaluate the effects of the dnaQ49 mutation and deletion of the umuDC operon encoding polymerase V (Pol V) on spontaneous mutagenesis in growing and stationary-phase E. coli cells. Using the argE3(OC) -->Arg+ reversion system in the AB1157 strain, we found that the level of growth-dependent and stationary-phase Arg+ revertants was significantly increased in the dnaQ49 mutant at the non-permissive temperature of 37 degrees C. At this temperature, in contrast to cultures grown at 28 degrees C, SOS functions were dramatically increased. Deletion of the umuDC operon in the dnaQ49 strain led to a 10-fold decrease in the level of Arg+ revertants in cultures grown at 37 degrees C and only to a 2-fold decrease in cultures grown at 28 degrees C. Furthermore, in stationary-phase cultures Pol V influenced spontaneous mutagenesis to a much lesser extent than in growing cultures. Our results indicate that the level of Pol III desintegration, dependent on the temperature of incubation, is more critical for spontaneous mutagenesis in stationary-phase dnaQ49 cells than the presence or absence of Pol V.  相似文献   

2.
Most organisms contain several members of a recently discovered class of DNA polymerases (umuC/dinB superfamily) potentially involved in replication of damaged DNA. In Escherichia coli, only Pol V (umuDC) was known to be essential for base substitution mutagenesis induced by UV light or abasic sites. Here we show that, depending upon the nature of the DNA damage and its sequence context, the two additional SOS-inducible DNA polymerases, Pol II (polB) and Pol IV (dinB), are also involved in error-free and mutagenic translesion synthesis (TLS). For example, bypass of N:-2-acetylaminofluorene (AAF) guanine adducts located within the NAR:I mutation hot spot requires Pol II for -2 frameshifts but Pol V for error-free TLS. On the other hand, error-free and -1 frameshift TLS at a benzo(a)pyrene adduct requires both Pol IV and Pol V. Therefore, in response to the vast diversity of existing DNA damage, the cell uses a pool of 'translesional' DNA polymerases in order to bypass the various DNA lesions.  相似文献   

3.
Although very little replication past a T-T cis-syn cyclobutane dimer normally takes place in Escherichia coli in the absence of DNA polymerase V (Pol V), we previously observed as much as half of the wild-type bypass frequency in Pol V-deficient (DeltaumuDC) strains if the 3' to 5' exonuclease proofreading activity of the Pol III epsilon subunit was also disabled by mutD5. This observation might be explained in at least two ways. In the absence of Pol V, wild-type Pol III might bind preferentially to the blocked primer terminus but be incapable of bypass, whereas the proofreading-deficient enzyme might dissociate more readily, providing access to bypass polymerases. Alternatively, even though wild-type Pol III is generally regarded as being incapable of lesion bypass, proofreading-impaired Pol III might itself perform this function. We have investigated this issue by examining dimer bypass frequencies in DeltaumuDC mutD5 strains that were also deficient for Pol I, Pol II, and Pol IV, both singly and in all combinations. Dimer bypass frequencies were not decreased in any of these strains and indeed in some were increased to levels approaching those found in strains containing Pol V. Efficient dimer bypass was, however, entirely dependent on the proofreading deficiency imparted by mutD5, indicating the surprising conclusion that bypass was probably performed by the mutD5 Pol III enzyme itself. This mutant polymerase does not replicate past the much more distorted T-T (6-4) photoadduct, however, suggesting that it may only replicate past lesions, like the T-T dimer, that form base pairs normally.  相似文献   

4.
Replication of genomes that contain blocking DNA lesions entails the transient replacement of the replicative DNA polymerase (Pol) by a polymerase specialized in lesion bypass. Here, we isolate and visualize at nucleotide resolution level, replication intermediates formed during lesion bypass of a single N-2-acetylaminofluorene-guanine adduct (G-AAF) in vivo. In a wild-type strain, a ladder of replication intermediates mapping from one to four nucleotides upstream of the lesion site, can be observed. In proofreading-deficient strains (mutD5 or dnaQ49), these replication intermediates disappear, thus assigning the degradation ladder to the polymerase-associated exonuclease activity. Moreover, in mutD5, a new band corresponding to the insertion of a nucleotide opposite to the lesion site is observed, suggesting that the polymerase and exonuclease activities of native Pol III enter a futile insertion-excision cycle that prevents translesion synthesis. The bypass of the G-AAF adduct located within the NarI sequence context requires the induction of the SOS response and involves either Pol V or Pol II in an error-free or a frameshift pathway, respectively. In the frameshift mutation pathway, inactivation of the proofreading activity obviates the need for SOS induction but nonetheless necessitates a functional polB gene, suggesting that, although proofreading-deficient Pol III incorporates a nucleotide opposite G-AAF, further extension still requires Pol II. These data are corroborated using a colony-based bypass assay.  相似文献   

5.
UV irradiation, a known carcinogen, induces the formation of dipyrimidine dimers with the predominant lesions being cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone adducts (6-4PPs). The relative roles of the yeast translesion synthesis DNA polymerases Pol zeta and Pol eta in UV survival and mutagenesis were examined using strains deficient in one or both polymerases. In addition, photoreactivation was used to specifically remove CPDs, thus allowing an estimate to be made of the relative contributions of CPDs vs. 6-4PPs to overall survival and mutagenesis. In terms of UV-induced mutagenesis, we focused on the +1 frameshift mutations detected by reversion of the lys2deltaA746 allele, as Pol zeta produces a distinct mutational signature in this assay. Results suggest that CPDs are responsible for most of the UV-associated toxicity as well as for the majority of UV-induced frameshift mutations in yeast. Although the presence of Pol eta generally suppresses UV-induced mutagenesis, our data suggest a role for this polymerase in generating some classes of +1 frameshifts. Finally, the examination of frameshift reversion spectra indicates a hierarchy between Pol eta and Pol zeta with respect to the bypass of UV-induced lesions.  相似文献   

6.
Nucleotide excision repair and translesion DNA synthesis are two processes that operate at arrested replication forks to reduce the frequency of recombination and promote cell survival following UV-induced DNA damage. While nucleotide excision repair is generally considered to be error free, translesion synthesis can result in mutations, making it important to identify the order and conditions that determine when each process is recruited to the arrested fork. We show here that at early times following UV irradiation, the recovery of DNA synthesis occurs through nucleotide excision repair of the lesion. In the absence of repair or when the repair capacity of the cell has been exceeded, translesion synthesis by polymerase V (Pol V) allows DNA synthesis to resume and is required to protect the arrested replication fork from degradation. Pol II and Pol IV do not contribute detectably to survival, mutagenesis, or restoration of DNA synthesis, suggesting that, in vivo, these polymerases are not functionally redundant with Pol V at UV-induced lesions. We discuss a model in which cells first use DNA repair to process replication-arresting UV lesions before resorting to mutagenic pathways such as translesion DNA synthesis to bypass these impediments to replication progression.  相似文献   

7.
Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed.  相似文献   

8.
Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins, UmuD', RecA and ssDNA-binding protein (SSB), has an ability to bypass the lesion with high mutagenicity. This enables reinitiation and extension of DNA replication by DNA polymerase III (Pol III). We studied UV- and MMS-induced mutagenesis of lambdaO(am)8 phage in E. coli 594 sup+ host, unable to replicate the phage DNA, as a possible model for mutagenesis induced in nondividing cells (e.g. somatic cells). We show that in E. coli 594 sup+ cells UV- and MMS-induced mutagenesis of lambdaO(am)8 phage may occur. This mutagenic process requires both the UmuD' and C proteins, albeit a high level of UmuD' and low level of UmuC seem to be necessary and sufficient. We compared UV-induced mutagenesis of lambdaO(am)8 in nonpermissive (594 sup+) and permissive (C600 supE) conditions for phage DNA replication. It appeared that while the mutagenesis of lambdaO(am)8 in 594 sup+ requires the UmuD' and C proteins, which can not be replaced by other SOS-inducible protein(s), in C600 supE their functions may be replaced by other inducible protein(s), possibly DNA polymerase IV (DinB). Mutations induced under nonpermissive conditions for phage DNA replication are resistant to mismatch repair (MMR), while among those induced under permissive conditions, only about 40% are resistant.  相似文献   

9.
DNA is constantly exposed to chemical and environmental mutagens, causing lesions that can stall replication. In order to deal with DNA damage and other stresses, Escherichia coli utilizes the SOS response, which regulates the expression of at least 57 genes, including umuDC. The gene products of umuDC, UmuC and the cleaved form of UmuD, UmuD', form the specialized E. coli Y-family DNA polymerase UmuD'2C, or polymerase V (Pol V). Y-family DNA polymerases are characterized by their specialized ability to copy damaged DNA in a process known as translesion synthesis (TLS) and by their low fidelity on undamaged DNA templates. Y-family polymerases exhibit various specificities for different types of DNA damage. Pol V carries out TLS to bypass abasic sites and thymine-thymine dimers resulting from UV radiation. Using alanine-scanning mutagenesis, we probed the roles of two active-site loops composed of residues 31 to 38 and 50 to 54 in Pol V activity by assaying the function of single-alanine variants in UV-induced mutagenesis and for their ability to confer resistance to UV radiation. We find that mutations of the N-terminal residues of loop 1, N32, N33, and D34, confer hypersensitivity to UV radiation and to 4-nitroquinoline-N-oxide and significantly reduce Pol V-dependent UV-induced mutagenesis. Furthermore, mutating residues 32, 33, or 34 diminishes Pol V-dependent inhibition of recombination, suggesting that these mutations may disrupt an interaction of UmuC with RecA, which could also contribute to the UV hypersensitivity of cells expressing these variants.  相似文献   

10.
Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function.  相似文献   

11.
Genes coding for DNA polymerases eta, iota and zeta, or for both Pol eta and Pol iota have been inactivated by homologous recombination in the Burkitt's lymphoma BL2 cell line, thus providing for the first time the total suppression of these enzymes in a human context. The UV sensitivities and UV-induced mutagenesis on an irradiated shuttle vector have been analyzed for these deficient cell lines. The double Pol eta/iota deficient cell line was more UV sensitive than the Pol eta-deficient cell line and mutation hotspots specific to the Pol eta-deficient context appeared to require the presence of Pol iota, thus strengthening the view that Pol iota is involved in UV damage translesion synthesis and UV-induced mutagenesis. A role for Pol zeta in a damage repair process at late replicative stages is reported, which may explain the drastic UV-sensitivity phenotype observed when this polymerase is absent. A specific mutation pattern was observed for the UV-irradiated shuttle vector transfected in Pol zeta-deficient cell lines, which, in contrast to mutagenesis at the HPRT locus previously reported, strikingly resembled mutations observed in UV-induced skin cancers in humans. Finally, a Pol eta PIP-box mutant (without its PCNA binding domain) could completely restore the UV resistance in a Pol eta deficient cell line, in the absence of UV-induced foci, suggesting, as observed for Pol iota in a Pol eta-deficient background, that TLS may occur without the accumulation of microscopically visible repair factories.  相似文献   

12.
We have introduced a mutD5 mutation (which results in defective 3'-5'-exonuclease activity of the epsilon proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect on UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the epsilon proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

13.
Plasmid pKM101, which carries muc genes that are analogous in function to chromosomal umu genes, protected Escherichia coli strains AB1157 uvrB+ umuC+, JC3890 uvrB umuC+, TK702 uvrB+ umuC and TK501 uvrB umuC against ultraviolet irradiation (UV). Plasmid pGW16, a derivative of pKM101 selected for its increased spontaneous mutator effect, also gave some protection to the UmuC-deficient strains, TK702 and TK501. However, it sensitised the wild-type strain AB1157 to low, but protected against high doses of UV, whilst sensitising strain JC3890 to all UV doses tested. Even though its UV-protecting effects varied, pGW16 was shown to increase both spontaneous and UV-induced mutation in all strains. Another derivative of pKM101, plasmid pGW12, was shown to have lost all spontaneous and UV-induced mutator effects and did not affect post-UV survival. Plasmids pKM101 and pGW16 increased post-UV DNA synthesis in strains AB1157 and TK702, whereas pGW12 had no effect. Similarly, the wild-type UV-protecting plasmids R46, R446b and R124 increased post-UV DNA synthesis in strain TK501, but the non-UV-protecting plasmids R1, RP4 and R6K had no effect. These results accord with the model for error-prone DNA repair that requires umu or muc gene products for chain elongation after base insertion opposite non-coding lesions. They also suggest that the UV-sensitizing effects of pGW16 on umu+ strains can be explained in terms of overactive DNA repair resulting in lethal, rather than repaired UV-induced lesions.  相似文献   

14.
Abstract

On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.  相似文献   

15.
Arg+ revertants of E. coli AB1157 and derivative strains were selected after MMS mutagenesis and subjected to a phenotypic analysis which permitted the partitioning of revertants into 4 classes. The distribution of these revertant classes was influenced by mutations affecting DNA-repair systems, mutagen treatment and revertant-selection methods. Introduction of the R46 plasmid into strains also affected this mutational specificity, and it was concluded that the plasmid's mutagenic enhancing effect does not merely augment the cellular error-prone capacity to repair MMS damage to DNA.  相似文献   

16.
DNA replication machineries tend to stall when confronted with damaged DNA template sites, causing the biochemical equivalent of a major 'train wreck'. A newly discovered bacterial DNA polymerase, Escherichia coli Pol V, acting in conjunction with the RecA protein, can exchange places with the stalled replicative Pol III core and catalyse 'error-prone' translesion synthesis. In contrast to Pol V-catalysed 'brute-force, sloppier copying', another SOS-induced DNA polymerase, Pol II, plays a pivotal role in an 'error-free', replication-restart DNA repair pathway and probably involves RecA-mediated homologous recombination.  相似文献   

17.
Fujii S  Isogawa A  Fuchs RP 《The EMBO journal》2006,25(24):5754-5763
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli.  相似文献   

18.
Rajpal DK  Wu X  Wang Z 《Mutation research》2000,461(2):133-143
DNA damage can lead to mutations during replication. The damage-induced mutagenesis pathway is an important mechanism that fixes DNA lesions into mutations. DNA polymerase zeta (Pol zeta), formed by Rev3 and Rev7 protein complex, and Rev1 are components of the damage-induced mutagenesis pathway. Since mutagenesis is an important factor during the initiation and progression of human cancer, we postulate that this mutagenesis pathway may provide an inhibiting target for cancer prevention and therapy. In this study, we tested if UV-induced mutagenesis can be altered by molecular modulation of Rev3 enzyme levels using the yeast Saccharomyces cerevisiae as a eukaryotic model system. Reducing the REV3 expression in yeast cells through molecular techniques was employed to mimic Pol zeta inhibition. Lower levels of Pol zeta significantly decreased UV-induced mutation frequency, thus achieving inhibition of mutagenesis. In contrast, elevating the Pol zeta level by enhanced expression of both REV3 and REV7 genes led to a approximately 3-fold increase in UV-induced mutagenesis as determined by the arg4-17 mutation reversion assays. In vivo, UV lesion bypass by Pol zeta requires the Rev1 protein. Even overexpression of Pol zeta could not alleviate the defective UV mutagenesis in the rev1 mutant cells. These observations provide evidence that the mutagenesis pathway could be used as a target for inhibiting damage-induced mutations.  相似文献   

19.
Escherichia coli mutator mutD5 is the most potent mutator known. The mutD5 mutation resides in the dnaQ gene encoding the proofreading exonuclease of DNA polymerase III holoenzyme. It has recently been shown that the extreme mutability of this strain results, in addition to a proofreading defect, from a defect in mutH, L, S-encoded postreplicational DNA mismatch repair. The following measurements of the mismatch-repair capacity of mutD5 cells demonstrate that this mismatch-repair defect is not structural, but transient. mutD5 cells in early log phase are as deficient in mismatch repair as mutL cells, but they become as proficient as wild-type cells in late log phase. Second, arrest of chromosomal replication in a mutD5-dnaA(Ts) strain at a nonpermissive temperature restores mismatch repair, even from the early log phase of growth. Third, transformation of mutD5 strains with multicopy plasmids expressing the mutH or mutL gene restores mismatch repair, even in rapidly growing cells. These observations suggest that the mismatch-repair deficiency of mutD strains results from a saturation of the mutHLS-mismatch-repair system by an excess of primary DNA replication errors due to the proofreading defect.  相似文献   

20.
Specificity of Escherichia coli mutD and mutL mutator strains   总被引:10,自引:0,他引:10  
T H Wu  C H Clarke  M G Marinus 《Gene》1990,87(1):1-5
The products of the mutD and mutL genes of Escherichia coli are involved in proofreading by DNA polymerase III and DNA adenine MTase (Dam)-dependent mismatch repair, respectively. We have used the plasmid-borne bacteriophage P22 mnt gene as a target to determine the types of mutations produced in mutL25 and mutD5 strains. Of 60 mutations identified from mutL25 cells, 52 were transition mutations and of these the AT----GC subset predominated (40 out of 52). The majority of AT----GC mutations were found at the same three sites (hotspots). In contrast, transversion mutations (47 out of 76) were found about twice as frequently as transitions (28 out of 76) from mutD5 bacteria. Two hotspots were identified but at different sites than those in the mutL25 cells. These results suggest that the proofreading function of DNA polymerase III primarily repairs potential transversion mutations while Dam-dependent mismatch repair rectifies potential transition mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号