首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the cytoplasm of eucaryotic cells, mRNA is associated with proteins. These mRNA-protein complexes, termed messenger ribonucleoprotein (mRNP) particles, are divided into two functional classes. The first class contains free (non-ribosome-associated) mRNPs which have been termed informosomes by others. The second class of mRNPs, those associated with polysomes, are actively engaged in protein synthesis and are termed polysomal mRNPs. The experiments described in this paper examined the proteins associated with polyribosomes in uninfected and herpes simplex virus type 1-infected cells. The data indicate that after infection with herpes simplex virus type 1, specific changes occur in the proteins which normally are found associated with these polysomal mRNPs. These changes include both the appearance of new and possibly virus-specific proteins and the loss of normal host-specific proteins. The relationship of these changes to the patterns of protein synthesis in these cells is also discussed.  相似文献   

2.
In previous studies we have shown that herpes simplex virus type 1 (HSV-1) infection suppresses host-cell protein synthesis in human endothelial cells (EC). It has been demonstrated that lithium salts prevent viral replication in HSV-1 infected cells. In the present study, we have measured host-cell protein synthesis in HSV-1 infected EC in the presence or absence of 20 and 30 mM LiCl. Although LiCl restored synthesis of almost all host-cell proteins, [35S]methionine incorporation was most pronounced in thrombospondin and plasminogen activator inhibitor 1 and least in fibronectin and type IV collagen. LiCl was more effective at the higher concentration (30 mM) and when the compound was added to the EC culture at the time of infection rather than after adsorption of HSV-1. Synthesis of virus proteins continued in LiCl-treated EC but at a reduced rate. The data suggest that LiCl not only interferes with virus replication, but may also, to some extent, interfere with the virion-associated inhibition of host protein synthesis.  相似文献   

3.
We examine biochemical characteristics of the herpes simplex virus (HSV) tegument protein VP22 by gel filtration, glycerol sedimentation, and chemical cross-linking experiments and use time course radiolabeling and immunoprecipitation assays to analyze its synthesis and interaction with other infected-cell proteins. VP22 was expressed as a delayed early protein with optimal synthesis requiring DNA replication. In immunoprecipitation assays, VP22 was found in association with several additional proteins including VP16 and a kinase activity likely to be that of UL13. Furthermore, in sizing chromatography experiments, VP22 was present in several higher-order complexes in infected cells. From gel filtration analysis the major form of VP22 migrated with a molecular mass of approximately 160 kDa, consistent with its presence as a tetramer, or a dimer complexed with other proteins, with a fraction of the protein migrating at larger molecular mass. In vitro-synthesized VP22 sedimented in a size range consistent with a mixture of tetramers and dimers. Short N- or C-terminal deletions resulted in migration almost exclusively as dimers, indicating that VP22, in the absence of additional virus-encoded proteins, could form higher-order assemblies, most likely tetramers, but that both N-and C-terminal determinants were required for stabilizing such assemblies. Consistent with this we found that isolated proteins encompassing either the N-terminal or C-terminal region of VP22 sedimented as dimers, and that the purified C-terminal domain could be cross-linked into dimeric structures. These results are discussed with regard to possible virus and host interactions involved in VP22 recruitment into virus particles.  相似文献   

4.
Human peripheral blood mononuclear cells which mediate antibody-dependent cellular cytotoxicity (ADCC) against herpes simplex virus- (HSV) infected target cells consist of both adherent (MA) and nonadherent (MNA) effector cell populations. These two cell populations can be distinguished by their different phagocytic properties and morphologic appearance, their requirement for antibody in the ADCC reaction, and the rapidity with which they lyse target cells in the presence of immune serum. The MA cells are predominantly phagocytic and have the morphologic characteristics of monocyte-macrophages, whereas the MNA cells are nonphagocytic and appear to be small to medium-sized lymphocytes. Optimal expression of ADCC by MA cells requires higher concentrations of immune serum than does MNA cell-mediated ADCC. MA-mediated cell killing is first detectable by 8 hr and reaches completion after 24 hr of incubation. In contrast, MNA-mediated ADCC produces target cell damage by 2 hr and reaches completion at 8 hr of incubation. Unlike MNA effector cells, the MA effector cells are profoundly inhibited after preincubation with either latex or silica particles. The HSV immune status of the donor had no effect on the ability of either cell population to mediate ADCC. These data demonstrate the participation of both nonadherent mononuclear cells, presumably K cells, and monocyte-macrophages, in ADCC directed against HSV-infected target cells.  相似文献   

5.
6.
Freshly collected peritoneal cells (PC) and cultured spleen cells (SC) (but not fresh SC) from nonimmune mice could mediate antibody-dependent cellular cytotoxicity (ADCC) against herpes simplex virus (HSV)-infected cells in the presence of mouse or human sera containing antibody to HSV. PC also demonstrated variable natural killer cell cytotoxicity to infected cells. Both PC and cultured SC required high concentrations of antibody and high effector to target cell ratios for optimal ADCC. The time kinetics of the reaction appeared to depend on the state of activation of the effector cells. In both PC and SC populations, ADCC activity was limited to adherent cells, and was profoundly inhibited by particulate latex or silica. The murine effector cell found in PC and SC able to mediate ADCC to HSV-infected cells appears to be a macrophage.  相似文献   

7.
Numerous cell-to-cell signals tightly regulate CTL function. Human fibroblasts infected with HSV type 1 or 2 can generate such a signal and inactivate human CTL. Inactivated CTL lose their ability to release cytotoxic granules and synthesize cytokines when triggered through the TCR. Inactivation requires cell-to-cell contact between CTL and HSV-infected cells. However, inactivated CTL are not infected with HSV. The inactivation of CTL is sustainable, as CTL function remains impaired when the CTL are removed from the HSV-infected cells. IL-2 treatment does not alter inactivation, and the inactivated phenotype is not transferable between CTL, distinguishing this phenotype from traditional anergy and T regulatory cell models. CTL inactivated by HSV-infected cells are not apoptotic, and the inactivated state can be overcome by phorbol ester stimulation, suggesting that inactivated CTL are viable and that the signaling block is specific to the TCR. HSV-infected cells require the expression of U(S)3, a viral protein kinase, to transmit the inactivating signal. Elucidation of the molecular nature of this signaling pathway may allow targeted manipulation of CTL function.  相似文献   

8.
Nuclear pore composition and gating in herpes simplex virus-infected cells   总被引:3,自引:1,他引:2  
The mechanism by which herpes simplex virus (HSV) exits the nucleus remains a matter of controversy. The generally accepted route proposes that capsids exit via primary envelopment at the inner nuclear membrane and subsequent fusion of this primary particle with the outer nuclear membrane to gain capsid entry to the cytoplasm. However, recent observations indicate that HSV may induce gross morphological alterations of nuclear pores, resulting in the loss of normal pores and the appearance of dilated gaps in the nuclear membrane of up to several 100 nm. On this basis, it was proposed that a main route of capsid exit from the nucleus is directly through these altered pores. Here, we examine the biochemical composition of some of the major nuclear pore components in uninfected and HSV-infected cells. We show that total levels of major nucleoporins and their sedimentation patterns in density gradients remain largely unchanged up to 18 h after HSV infection. Some alteration in modification of one nucleoporin, Nup358/RanBP2, was observed during enrichment with anti-nucleoporin antibody and probing for O glycosylation. In addition, we examine functional gating within the nucleus in live cells, using microinjection of labeled dextran beads and a recombinant virus expressing GFP-VP16 to track the progress of infection. The nuclear permeability barrier for molecules bigger than 70 kDa remained intact throughout infection. Thus, in a functional assay in live cells, we find no evidence for gross perturbation to the gating of nuclear pores, although this might not exclude a small population of modified pores.  相似文献   

9.
Herpes simplex viruses (HSV) remain latent in sensory and peripheral ganglia and can be reactivated to cause recurrent HSV infections. Recent evidence has suggested that stress can induce an immunosuppressive state and increase the frequency and severity of recurrent herpes infections. Because macrophages play a central role in the host defense against HSV, the effects of stress-related neuroendocrine hormones on macrophage-HSV interactions were examined. Norepinephrine and epinephrine blocked the capacity of recombinant interferon-gamma (IFN-gamma) to activate murine macrophages to a cytotoxic state capable of selectively killing HSV-infected cells. In contrast, ACTH, dopamine, serotonin, and beta-endorphin had no effect. The suppression of IFN-gamma-induced, macrophage-mediated lysis of HSV-infected cells occurred concomitantly with a marked increase in macrophage intracellular cyclic AMP levels. Moreover, exogenous administration of dibutyryl cyclic AMP blocked induction of macrophage-mediated cytotoxicity, suggesting that the neurohormones were modulating macrophage function via an adrenergic receptor-mediated system. These findings demonstrate that selective stress-related neurohormones modify the cytolytic activity of macrophages against virus-infected cells and suggest a possible neuroendocrine-immunologic basis for the recurrence of HSV infection.  相似文献   

10.
Herpes simplex virus (HSV) entry requires the interaction of glycoprotein D (gD) with a cellular receptor such as herpesvirus entry mediator (HVEM or HveA) or nectin-1 (HveC). However, the fusion mechanism is still not understood. Since cholesterol-enriched cell membrane lipid rafts are involved in the entry of other enveloped viruses such as human immunodeficiency virus and Ebola virus, we tested whether HSV entry proceeds similarly. Vero cells and cells expressing either HVEM or nectin-1 were treated with cholesterol-sequestering drugs such as methyl-beta-cyclodextrin or nystatin and then exposed to virus. In all cases, virus entry was inhibited in a dose-dependent manner, and the inhibitory effect was fully reversible by replenishment of cholesterol. To examine the association of HVEM and nectin-1 with lipid rafts, we analyzed whether they partitioned into nonionic detergent-insoluble glycolipid-enriched membranes (DIG). There was no constitutive association of either receptor with DIG. Binding of soluble gD or virus to cells did not result in association of nectin-1 with the raft-containing fractions. However, during infection, a fraction of gB but not gC, gD, or gH associated with DIG. Similarly, when cells were incubated with truncated soluble glycoproteins, soluble gB but not gC was found associated with DIG. Together, these data favor a model in which HSV uses gB to rapidly mobilize lipid rafts that may serve as a platform for entry and cell signaling. It also suggests that gB may interact with a cellular molecule associated with lipid rafts.  相似文献   

11.
The herpes simplex virus virion host shutoff protein (vhs) is an mRNA-specific RNase that contributes to shutoff of host protein synthesis. We show here that vhs-induced mRNA decay proceeds 5' to 3' in an in vitro assay system derived from rabbit reticulocyte lysate.  相似文献   

12.
The UL11 gene of herpes simplex virus type 1 encodes a 96-amino-acid tegument protein that is myristylated, palmitylated, and phosphorylated and is found on the cytoplasmic faces of nuclear, Golgi apparatus-derived, and plasma membranes of infected cells. Although this protein is thought to play a role in virus budding, its specific function is unknown. Purified virions were found to contain approximately 700 copies of the UL11 protein per particle, making it an abundant component of the tegument. Moreover, comparisons of cell-associated and virion-associated UL11 showed that packaging is selective for underphosphorylated forms, as has been reported for several other tegument proteins. Although the mechanism by which UL11 is packaged is unknown, previous studies have identified several sequence motifs in the protein that are important for membrane binding, intracellular trafficking, and interaction with UL16, another tegument protein. To ascertain whether any of these motifs are needed for packaging, a transfection/infection-based assay was used in which mutant forms of the protein must compete with the wild type. In this assay, the entire C-terminal half of UL11 was found to be dispensable. In the N-terminal half, the sites of myristylation and palmitylation, which enable membrane-binding and Golgi apparatus-specific targeting, were found to be essential for efficient packaging. The acidic cluster motif, which is not needed for Golgi apparatus-specific targeting but is involved in recycling the protein from the plasma membrane and for the interaction with UL16, was found to be essential, too. Thus, something other than mere localization of UL11 to Golgi apparatus-derived membranes is needed for packaging. The critical factor is unlikely to be the interaction with UL16 because other mutants that fail to bind this protein (due to removal of the dileucine-like motif or substitutions with foreign acidic clusters) were efficiently packaged. Collectively, these results suggest that UL11 packaging is not driven by a passive mechanism but instead requires trafficking through a specific pathway.  相似文献   

13.
The cellular site of herpesvirus tegument assembly has yet to be defined. We have previously used a recombinant herpes simplex virus type 1 expressing a green fluorescent protein (GFP)-tagged tegument protein, namely VP22, to show that VP22 is localized exclusively to the cytoplasm during infection. Here we have constructed a similar virus expressing another fluorescent tegument protein, YFP-VP13/14, and have visualized the intracellular localization of this second tegument protein in live infected cells. In contrast to VP22, VP13/14 is targeted predominantly to the nuclei of infected cells at both early and late times in infection. More specifically, YFP-13/14 localizes initially to the nuclear replication compartments and then progresses into intense punctate domains that appear at around 12 h postinfection. At even later times this intranuclear punctate fluorescence is gradually replaced by perinuclear micropunctate and membranous fluorescence. While the vast majority of YFP-13/14 seems to be targeted to the nucleus, a minor subpopulation also appears in a vesicular pattern in the cytoplasm that closely resembles the pattern previously observed for GFP-22. Moreover, at late times weak fluorescence appears at the cell periphery and in extracellular virus particles, confirming that YFP-13/14 is assembled into virions. This predominantly nuclear targeting of YFP-13/14 together with the cytoplasmic targeting of VP22 may imply that there are multiple sites of tegument protein incorporation along the virus maturation pathway. Thus, our YFP-13/14-expressing virus has revealed the complexity of the intracellular targeting of VP13/14 and provides a novel insight into the mechanism of tegument, and hence virus, assembly.  相似文献   

14.
The product of the U(L)11 gene of herpes simplex virus type 1 (HSV-1) is a 96-amino-acid tegument protein that accumulates on the cytoplasmic face of internal membranes. Although it is thought to be important for nucleocapsid envelopment and egress, the actual function of this protein is unknown. Previous studies focused on the characterization of sequence elements within the UL11 protein that function in membrane binding and trafficking to the Golgi apparatus. Binding was found to be mediated by two fatty acyl groups (myristate and palmitate), while an acidic cluster and a dileucine motif were identified as being important for the recycling of UL11 from the plasma membrane to the Golgi apparatus. The goal of the experiments described here was to identify and characterize binding partners (viral or cellular) of UL11. Using both immunoprecipitation and glutathione S-transferase (GST) pull-down assays, we identified a 40-kDa protein that specifically associates with UL11 from infected Vero cells. Mutational analyses revealed that the acidic cluster and the dileucine motif are required for this association, whereas the entire second half of UL11 is not. In addition, UL11 homologs from pseudorabies and Marek's disease herpesviruses were also found to be capable of binding to the 40-kDa protein from HSV-1-infected cells, suggesting that the interaction is conserved among alphaherpesviruses. Purification and analysis of the 40-kDa protein by mass spectrometry revealed that it is the product of the U(L)16 gene, a virion protein reported to be involved in nucleocapsid assembly. Cells transfected with a UL16-green fluorescent protein expression vector produced a protein that was of the expected size, could be pulled down with GST-UL11, and accumulated in a Golgi-like compartment only when coexpressed with UL11, indicating that the interaction does not require any other viral products. These data represent the first steps toward elucidating the network of tegument proteins that UL11 links to membranes.  相似文献   

15.
Tegument proteins of herpes simplex virus type 1 (HSV-1) are hypothesized to contain the functional information required for the budding or envelopment process proposed to occur at cytoplasmic compartments of the host cell. One of the most abundant tegument proteins of HSV-1 is the U(L)49 gene product, VP22, a 38-kDa protein of unknown function. To study its subcellular localization, a VP22-green fluorescent protein chimera was expressed in transfected human melanoma (A7) cells. In the absence of other HSV-1 proteins, VP22 localizes to acidic compartments of the cell that may include the trans-Golgi network (TGN), suggesting that this protein is membrane associated. Membrane pelleting and membrane flotation assays confirmed that VP22 partitions with the cellular membrane fraction. Through truncation mutagenesis, we determined that the membrane association of VP22 is a property attributed to amino acids 120 to 225 of this 301-amino-acid protein. The above results demonstrate that VP22 contains specific information required for targeting to membranes of acidic compartments of the cell which may be derived from the TGN, suggesting a potential role for VP22 during tegumentation and/or final envelopment.  相似文献   

16.
The herpes simplex virus type 1 gene UL47 encodes the tegument proteins referred to collectively as VP13/14, which are believed to be differentially modified forms of the same protein. Here we show that the major product of the UL47 gene during transient expression is VP14, suggesting that some feature of virus infection is required to produce VP13. We have tagged VP13/14 with green fluorescent protein and have demonstrated that the protein is targeted efficiently to the nucleus, where it often localizes in numerous punctate domains. Furthermore, we show that removal of the N-terminal 127 residues of the protein abrogates nuclear accumulation, and we have identified a 14-amino-acid peptide from this region that is sufficient to function as a nuclear targeting signal and transport a heterologous protein to the nucleus. This short peptide contains two runs of four arginine residues, suggesting that the VP13/14 nuclear localization signal may behave in a manner similar to that of the arginine-rich nuclear localization signals of the retrovirus transactivator proteins Tat, Rev, and Rex. In addition, by using heterokaryon assays, we show that VP13/14 is capable of shuttling between the nucleus and cytoplasm of the cell, a property that may be attributed to three leucine-rich stretches in the C-terminal half of the protein that again bear similarity to the nuclear export signals of Rev and Rex. This is the first demonstration of a tegument protein that is specifically targeted to the nucleus, a feature which may be relevant both during virus entry, when VP13/14 enters the cell as a component of the tegument, and at later times, when large amounts of newly synthesized VP13/14 are present within the cell.  相似文献   

17.
18.
19.
Meckes DG  Wills JW 《Journal of virology》2007,81(23):13028-13036
The UL16 tegument protein of herpes simplex virus is conserved throughout the herpesvirus family. It has been reported to be capsid associated and may be involved in budding by providing an interaction with the membrane-bound UL11 protein. UL16 has been shown to be present in all the major locations that capsids are found (i.e., the nucleus, cytoplasm, and virions), but whether it is actually capsid associated in each of these has not been reported. Therefore, capsids were purified from each compartment, and it was found that UL16 was present on cytoplasmic but not nuclear capsids. In extracellular virions, the majority of UL16 (87%) was once again not capsid associated, which suggests that the interaction is transient during egress. Because herpes simplex virus (HSV) buds into the acidic compartment of the trans-Golgi network (TGN), the effect of pH on the interaction was examined. The amount of capsid-associated UL16 dramatically increased when extracellular virions were exposed to mildly acidic medium (pH 5.0 to 5.5), and this association was fully reversible. After budding into the TGN, capsid and tegument proteins also encounter an oxidizing environment, which is conducive to disulfide bond formation. UL16 contains 20 cysteines, including five that are conserved within a putative zinc finger. Any free cysteines that are involved in the capsid interaction or release mechanism of UL16 would be expected to be modified by N-ethylmaleimide, and, consistent with this, the amount of capsid-associated UL16 dramatically increased when virions were incubated with this compound. Taken together, these data suggest a transient interaction between UL16 and capsids, possibly modified in the acidic compartment of secretory vesicles and requiring a release mechanism that involves cysteines.  相似文献   

20.
Invariant CD1d-restricted NKT (iNKT) cells play important roles in generating protective immune responses against infections. In this study, we have investigated the role of human iNKT cells in HSV-1 infection and their interaction with epidermal keratinocytes. These cells express CD1d and are the primary target of the virus. Keratinocytes loaded with α-galactosyl ceramide (α-GalCer) could stimulate IFN-γ production and CD25 upregulation by iNKT cells. However, both α-GalCer-dependent and cytokine-dependent activation of iNKT cells was impaired after coculture with HSV-1-infected cells. Notably, CD1d downregulation was not observed on infected keratinocytes, which were also found to inhibit TCR-independent iNKT cell activation. Further examination of the cytokine profile of iNKT-keratinocyte cocultures showed inhibition of IFN-γ, IL-5, IL-10, IL-13, and IL-17 secretion but upregulation of IL-4 and TNF-α after the infection. Moreover, cell-to-cell contact between infected keratinocytes and iNKT cells was required for the inhibition of activation, as the cell-free supernatants containing virus did not affect activation. Productive infection of iNKT cells was however not required for the inhibitory effect. After coculture with infected cells, iNKT cells were no longer responsive to further stimulation with α-GalCer-loaded CD1d-expressing cells. We found that exposure to HSV-1-infected cells resulted in impaired TCR signaling downstream of ZAP70. Additionally, infected cells upregulated the expression of the negative T cell regulator, galectin-9; however, blocking experiments indicated that the impairment of iNKT cell responses was independent of galectin-9. Thus, interference with activation of human iNKT cells by HSV-1 may represent a novel immunoevasive strategy used by the virus to avoid immune clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号