首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When arachidonic acid is added to lysates of rat polymorphonuclear leukocytes, it is oxidized to (5S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid (5-HPETE). The 5-HPETE then partitions between reduction to the 5-hydroxyeicosanoid and conversion to leukotriene A4 (LTA4). Both steps in the formation of LTA4 are catalyzed by the enzyme 5-lipoxygenase. When [3H]arachidonic acid and unlabeled 5-HPETE were incubated together with 5-lipoxygenase, approximately 20% of the arachidonic acid oxidized at low enzyme concentrations was converted to LTA4 without reduction of the specific radioactivity of the LTA4 by the unlabeled 5-HPETE. A significant fraction of the [3H]-5-HPETE intermediate that is formed from arachidonic acid must therefore be converted directly to LTA4 without dissociation of the intermediate from the enzyme. This result predicts that even in the presence of high levels of peroxidase activity, which will trap any free 5-HPETE by reduction, the minimum efficiency of conversion of 5-HPETE to LTA4 will be approximately 20%, and this prediction was confirmed. 5-HPETE was found to be a competitive substrate relative to arachidonic acid, so that it is likely that the two substrates share a common active site.  相似文献   

2.
The data on the pharmacology of leukotrienes showed that LTA4, LTC4 and LTD4 were equipotent on the guinea-pig lung parenchyma whereas LTB4 was slightly less active. However, on the trachea, the myotropic activity of LTC4 and LTD4 was equivalent and higher than LTB4 and LTA4. The potency of these compounds was also different on the ileum where LTD4 was more active than LTC4; at the concentration used, LTA4 and LTB4 were inactive on this tissue. These results suggested that the transformation of leukotrienes by the smooth muscle preparations was a prerequisite for its biological activity. To verify this hypothesis, LTA4 (100 ng) was incubated for 10 min. with 20,000 g supernatants of homogenates of guinea-pig lung parenchyma, trachea and ileum; the metabolites were analysed by bioassay using strips of guinea-pig ileum and lung parenchyma in a cascade superfusion system and by RP-HPLC. Homogenates of lung parenchyma rapidly transformed LTA4 to LTB4, LTC4, LTD4 and LTE4, which is in agreement with the myotropic potency of these leukotrienes on the lung parenchymal strip. Conversely, incubation of LTA4 with homogenates of guinea-pig ileum showed the formation of LTB4 and its isomers which are inactive on this preparation. Similarly, incubation of homogenates of trachea with LTA4 led to the formation of LTB4; this finding is again in agreement with the potency of these two leukotrienes on the trachea. Our results suggest that the myotropic activity and potency of LTA4 is related to the tissue levels of enzymes which catalyse its transformation.  相似文献   

3.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

4.
Stimulation of human neutrophils with 12-hydroperoxyeicosatetraenoic acid (12-HPETE) led to formation of 5S, 12S-dihydroxyeicosatetraenoic acid (DiHETE), but leukotriene B4 (LTB4) or 5-hydroxyeicosatetraenoic acid (5-HETE) was not detectable by reversed-phase high-performance liquid chromatography analysis. N-formylmethionylleucylphenylalanine (FMLP) induced the additional synthesis of small amounts of LTB4 in 12-HPETE-stimulated neutrophils. The addition of arachidonic acid greatly increased the synthesis of LTB4 and 5-HETE by neutrophils incubated with 12-HPETE. In experiments using [1-14C]arachidonate-labeled neutrophils, little radioactivity was released by 12-HPETE alone or by 12-HPETE plus FMLP, while several radiolabeled compounds, including LTB4 and 5-HETE, were released by A23187. These findings demonstrate that LTB4 biosynthesis by 12-HPETE-stimulated neutrophils requires free arachidonic acid which may be endogenous or exogenous.  相似文献   

5.
5-oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A(4) (LTA(4)) in addition to 5,12-dihydroxy-(6E,8E,10E, 14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E, 11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA(4) was found to be pH-dependent. After incubation of LTA(4) in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA(4) in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC(50) of 250 nM, as compared to values of 3.5 nM for leukotriene B(4) (LTB(4)500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB(4) totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB(4). The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB(4) receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB(4) receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z, 14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB(4).  相似文献   

6.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

7.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

8.
A method for the simultaneous single-step organic extraction from biological matrices of peptido- and dihydroxyleukotrienes as well as 5-hydroperoxy- and 5-hydroxyeicosatetraenoic acid followed by separation and quantitation in a single run on reversed-phase high-performance liquid chromatography was evaluated. Using an extraction system comprising 400/1200/4800 (v/v/v) aqueous phase/isopropanol/dichloromethane, pH 3.0, absolute recoveries of 82.3 +/- 2.0, 89.7 +/- 1.0, 93.7 +/- 1.4, 92.8 +/- 1.4, 90 +/- 4, and 90 +/- 4% for prostaglandin B1 (PGB1), leukotriene C4 (LTC4), leukotriene B4 (LTB4), leukotriene D4 (LTD4), 5-hydroperoxyeicosatetraenoic acid (5-HETE), respectively, were achieved. Separation and quantitation of products were performed on a Nucleosil 100 C18 column (5 microns, 4.6 X 250 mm) using, at pH 6.0, a gradient system comprising 72/28/0.02 (v/v/v) methanol/water/glacial acetic acid from 0 to 15 min, followed by a convex gradient to 76/24/0.02 (v/v/v) methanol/water/glacial acetic acid, followed by a 10-min hold at this methanol concentration. The method was used to investigate the profile of leukotrienes synthesized by rat hepatocyte homogenates from 5-HPETE or leukotriene A4 in absence or presence of glutathione (GSH). During a 5-min incubation with 100 microM 5-HPETE, 9.6 ng LTB4/mg protein and 2.2 micrograms 5-HETE/mg protein were formed in the absence of GSH. In the presence of 0.4 mM GSH, 3.7 ng LTB4/mg protein and 11.0 micrograms 5-HETE/mg protein were formed. Using 20 microM LTA4 as a substrate, 17.3 and 324.0 ng LTC4/mg protein X min and 14.3 and 19.3 ng LTB4/mg protein X min were formed in the presence of 0.4 and 10 mM GSH, respectively.  相似文献   

9.
Leukotrienes A4 and D4 displayed equivalent myotropic activity on guinea pig lung parenchyma strips. However, on the trachea, the activity of LTD4 was much higher than that of LTA4. The potencies of these two leukotrienes were also different on strips of longitudinal muscles of the ileum where LTD4 was very active whereas LTA4 was inactive. Since the activities of both leukotrienes were blocked by FPL-55712, our results suggested that the transformation of LTA4 by the smooth muscle preparations was a prerequisite to its biological activity. LTA4 was then incubated for 10 min with homogenates of guinea pig lung parenchyma, trachea and longitudinal muscles of ileum, and the metabolites were analysed by bioassay using strips of guinea pig ileum and lung parenchyma in a cascade superfusion system and also by reversed phase high performance liquid chromatography (RP-HPLC). Homogenates of lung parenchyma rapidly transformed LTA4 to LTB4, LTC4, LTD4 and LTE4. Incubation of LTA4 with homogenates of trachea or of the longitudinal muscles of ileum showed the formation of LTB4 and its isomers but no significant amount of peptido-leukotrienes were detected. These findings reveal that LTA4 undergoes distinctly different metabolic transformations in these tissues which correspond to the biological activities of the products recovered. These results strongly suggest that the myotropic activity and potency of LTA4 is related to the tissue levels of enzymes which catalyse its biotransformation.  相似文献   

10.
Role of lipoxygenation in human natural killer cell activation   总被引:1,自引:0,他引:1  
Nordihydroguaiaretic acid (NDGA), quercetin, eicosatetraynoic acid (ETYA), phenidone, and esculetin, agents known to inhibit cellular lipoxygenase (LO) activity, also inhibit human natural killer cell-mediated cytotoxicity (NK-CMC) of K562 tumor target cells (TC) in a dose-dependent fashion. Kinetic analysis demonstrated that LO inhibitors blocked an early event in the activation of the lytic mechanism but did not impair conjugate formation. LO inhibitors also did not affect subsequent chromium release, indicating that their site of inhibition was the NK cell and not the TC. The lipoxygenase products 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene-B4 significantly enhanced NK activity, with 5-HPETE being the more effective. Other LO products tested included 15-HPETE and the hydroxy derivatives 15-hydroxyeicosatetraenoic acid (15-HETE) and 5-HETE. These LO metabolites were either without effect on NK-CMC or inhibitory, depending upon the concentration. Additionally, we examined the ability of 5-HPETE to circumvent the effects of LO inhibitors and found that, in the presence of NDGA, ETYA or quercetin, 5-HPETE significantly (p less than 0.001) restored lytic activity. Inhibitors of LTB4 and LTC4 synthesis, diethylcarbamazine and U-60,257 respectively, produced no inhibition of NK activity. In fact, U-60,257 significantly (p less than 0.05) enhanced NK-CMC. Previous studies in our laboratory, with a new technique which allows for the separation of NK cells from K562 cells, have shown that K562-treated effector cells are greater than 90% inactivated when retested against fresh K562 in the standard chromium release assay. Lipids were extracted from K562-treated, Percoll-purified LGL and evaluated by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). No significant increases were seen in the arachidonic acid-derived LO products evaluated. Thus, our studies indicate that lipoxygenation may be required in the activation of NK-CMC, possibly as a means to generate oxygen radicals which have been previously implicated in NK-CMC.  相似文献   

11.
Rat basophilic leukemia cells exhibit 12-lipoxygenase activity only upon cell disruption. 12-Lipoxygenase may also possess 15-lipoxygenase activity, as is indicated by the formation of low amounts of 15(S)-HETE, in addition to the predominant product 12(S)-HETE, upon incubation of partially purified 12-lipoxygenase with arachidonic acid. With 5(S)-HPETE as substrate not only 5(S), 12(S)-diHETE and 5(S), 15(S)-diHETE are formed, but also LTA4, as was indicated by the presence of LTA4-derived LTB4-isomers. 12-Lipoxygenase from rat basophilic leukemia cells has many features in common with 12-lipoxygenase from bovine leukocytes. As was suggested for the latter enzyme, 12-lipoxygenase from rat basophilic leukemia cells may represent the remaining LTA4-synthase activity of 5-lipoxygenase, of which the 5-dioxygenase activity has disappeared upon cell disruption. Such a possible shift from 5-lipoxygenase activity to 12-lipoxygenase activity could not simply be induced by interaction of cytosolic 5-lipoxygenase with a membrane fraction after cell disruption, but may involve release of membrane-associated 5-lipoxygenase upon disruption of activated rat basophilic leukemia cells.  相似文献   

12.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

13.
Leukotriene A(4) (LTA(4)) is a chemically reactive conjugated triene epoxide product derived from 5-lipoxygenase oxygenation of arachidonic acid. At physiological pH, this reactive compound has a half-life of less than 3 s at 37 degrees C and approximately 40 s at 4 degrees C. Regardless of this aqueous instability, LTA(4) is an intermediate in the formation of biologically active leukotrienes, which can be formed through either intracellular or transcellular biosynthesis. Previously, epithelial fatty acid binding protein (E-FABP) present in RBL-1 cells was shown to increase the half-life of LTA(4) to approximately 20 min at 4 degrees C. Five FABPs (adipocyte FABP, intestinal FABP, E-FABP, heart/muscle FABP, and liver FABP) have now been examined and also found to increase the half-life of LTA(4) at 4 degrees C to approximately 20 min with protein present. Stabilization of LTA(4) was examined when arachidonic acid was present to compete with LTA(4) for the binding site on E-FABP. Arachidonate has an apparent higher affinity for E-FABP than LTA(4) and was able to completely block stabilization of the latter. When E-FABP is not saturated with arachidonate, FABP can still stabilize LTA(4). Several lipoxygenase products, including 5-hydroxyeicosatetraenoic acid, 5,6-dihydroxyeicosatetraenoic acid, and leukotriene B(4), were found to have no effect on the stability of LTA(4) induced by E-FABP even when present at concentrations 3-fold higher than LTA(4).  相似文献   

14.
Leukotriene A4 (LTA4) hydrolase catalyzes a rate-limiting final biosynthetic step of leukotriene B4 (LTB4), a potent lipid chemotactic agent and proinflammatory mediator. LTB4 has been implicated in the pathogenesis of various acute and chronic inflammatory diseases, and thus LTA4 hydrolase is regarded as an attractive therapeutic target for anti-inflammation. To facilitate identification and optimization of LTA4 hydrolase inhibitors, a specific and efficient assay to quantify LTB4 is essential. This article describes the development of a novel 384-well homogeneous time-resolved fluorescence assay for LTB4 (LTB4 HTRF assay) and its application to establish an HTRF-based LTA4 hydrolase assay for lead optimization. This LTB4 HTRF assay is based on competitive inhibition and was established by optimizing the reagent concentration, buffer composition, incubation time, and assay miniaturization. The optimized assay is sensitive, selective, and robust, with a Z' factor of 0.89 and a subnanomolar detection limit for LTB4. By coupling this LTB4 HTRF assay to the LTA4 hydrolase reaction, an HTRF-based LTA4 hydrolase assay was established and validated. Using a test set of 16 LTA4 hydrolase inhibitors, a good correlation was found between the IC50 values obtained using LTB4 HTRF with those determined using the LTB enzyme-linked immunoassay (R = 0.84). The HTRF-based LTA4 hydrolase assay was shown to be an efficient and suitable assay for determining compound potency and library screening to guide the development of potent inhibitors of LTA4 hydrolase.  相似文献   

15.
Experiments to investigate the fate of intravascularly administered leukotriene (LT) A4, an unstable intermediate of LT generation, were performed in isolated, ventilated, and blood-free perfused rabbit lungs. LT extracted from the lung effluent were separated by different reverse phase and straight phase HPLC procedures as methylated and nonmethylated compounds. Identity of eluting LT was confirmed by UV spectrum analysis and immunoreactivity. Pulmonary artery injection of 75 to 300 nmol of LTA4 resulted in the rapid appearance of cysteinyl-LT as well as LTB4 in the recirculating perfusate. The yield of these enzymatically generated LTA4 metabolites vs non-enzymatic hydrolysis products (6-trans-LTB4, 5-trans-epi-LTB4, 5,6-dihydroxyeicosatetraenoic acids) ranged above 90%. Experiments with application of tritiated LTA4 showed exclusive origin of the detected LT from the exogenously applied precursor. The time course of cysteinyl-LT appearance in the perfusate suggested metabolism of LTC4 via LTD4 to LTE4, whereas there was no evidence for LTB4 omega-oxidation. In the dose range of LTA4 used, the enzymatic conversion of this LT precursor did not approach saturation. Collectively, these data indicate that the intact pulmonary vasculature contains a hitherto not described capacity for enzymatic conversion of intravascularly offered LTA4 to both cysteinyl-LT and LTB4. This may be of biological significance for a putative transcellular biosynthesis of LT in the pulmonary microcirculation upon contact with LTA4 feeder cells, such as activated granulocytes.  相似文献   

16.
Mammalian leukotriene A4 (LTA4) hydrolase is a bifunctional zinc metalloenzyme possessing an Arg/Ala aminopeptidase and an epoxide hydrolase activity, which converts LTA4 into the chemoattractant LTB4. We have previously cloned an LTA4 hydrolase from Saccharomyces cerevisiae with a primitive epoxide hydrolase activity and a Leu aminopeptidase activity, which is stimulated by LTA4. Here we used a modeled structure of S. cerevisiae LTA4 hydrolase, mutational analysis, and binding studies to show that Glu-316 and Arg-627 are critical for catalysis, allowing us to a propose a mechanism for the epoxide hydrolase activity. Guided by the structure, we engineered S. cerevisiae LTA4 hydrolase to attain catalytic properties resembling those of human LTA4 hydrolase. Thus, six consecutive point mutations gradually introduced a novel Arg aminopeptidase activity and caused the specific Ala and Pro aminopeptidase activities to increase 24 and 63 times, respectively. In contrast to the wild type enzyme, the hexuple mutant was inhibited by LTA4 for all tested substrates and to the same extent as for the human enzyme. In addition, these mutations improved binding of LTA4 and increased the relative formation of LTB4, whereas the turnover of this substrate was only weakly affected. Our results suggest that during evolution, the active site of an ancestral eukaryotic zinc aminopeptidase has been reshaped to accommodate lipid substrates while using already existing catalytic residues for a novel, gradually evolving, epoxide hydrolase activity. Moreover, the unique ability to catalyze LTB4 synthesis appears to be the result of multiple and subtle structural rearrangements at the catalytic center rather than a limited set of specific amino acid substitutions.  相似文献   

17.
Transformation of leukotriene A4 to lipoxins by rat kidney mesangial cell   总被引:1,自引:0,他引:1  
Incubation of rat mesangial cells with leukotriene A4 in the presence of calcium ionophore A23187 led to a substrate dependent formation of lipoxin and its isomers. The major metabolite coeluted with authentic lipoxin A4 (LXA4) and lipoxin B4 (LXB4) in RP-HPLC system, and possessed a characteristic U.V. spectrum and C-value which were identical to authentic standards. GC/MS analysis on LXA4 further demonstrates that the mesangial cell derived LXA4 was identical to that reported by Serhan et al. (1) as LXA4 [5(S), 6,(R), 15(S)-trihydroxy7,9,13-trans-11-cis-eicosatetraenoic acid]. The formation of LXA4 was linear with substrate (LTA4) concentration. No similar products occurred in boiled controls. Incubation of mesangial cell with 15-HPETE failed to produce any lipoxin-like material. The absence of LX-like substance following incubation of 15-HPETE with mesangial cells suggested that 5-lipoxygenase activity is not expressed in mesangial cells under these conditions. The generation of LXA4 from LTA4 in mesangial cells suggested that there is an active 15- or 12- lipoxygenase activity in the kidney. The production of LX may play an important role in the regulation of renal function and the response to inflammatory stimuli.  相似文献   

18.
The activity of natural 5,6-Dihydroxy-eicosatetraenoic acid (5,6-DiHETE; 2 isomers), 5S,15S-DiHETE, 8S,15S-DiHETE, 5S,12S-DiHETE, delta 6-trans-leukotriene B4, 12-epi-delta 6-trans-leukotriene B4, omega-hydroxy-leukotriene B4, omega-carboxy-leukotriene B4, 15S-hydroxyeicosatetraenoic acid (15S-HETE), 12S-HETE, 5S-HETE and 12S-hydroxy-heptadecatrienoic acid was compared to LTB4 on the guinea-pig lung parenchymal strip and on the release of prostaglandins and thromboxanes by the perfused guinea-pig lungs. The omega-hydroxy-LTB4 appeared more potent than LTB4 both for inducing a contraction and for releasing prostanoids whereas the omega-carboxy-LTB4 was much less active on the parenchyma and did not release prostanoids at the dose used. All other hydroxy acids tested were either very weakly active or inactive in the two systems used with the exception of the 5,6-DiHETEs which showed significant activity. These di-hydroxy acids induced contractions of the lung parenchymal strip which could be blocked by FPL-55712 but were inactive on the guinea-pig ileum. The 5S-HETE, 12S-HETE and 15S-HETE were also tested for possible myotropic activity on selected smooth muscle preparations. Our results provide further informations on the structural requirements for LTB4 (and other hydroxy acids) actions on the guinea-pig lungs.  相似文献   

19.
Bestatin, an inhibitor of aminopeptidases, was also a potent inhibitor of leukotriene (LT) A4 hydrolase. On isolated enzyme its effects were immediate and reversible with a Ki = 201 +/- 95 mM. With erythrocytes it inhibited LTB4 formation greater than 90% within 10 min; with neutrophils it inhibited LTB4 formation by only 10% during the same period, increasing to 40% in 2 h. Bestatin inhibited LTA4 hydrolase selectively; neither 5-lipoxygenase nor 15-lipoxygenase activity in neutrophil lysates was affected. Purified LTA4 hydrolase exhibited an intrinsic aminopeptidase activity, hydrolyzing L-lysine-p-nitroanilide and L-leucine-beta-naphthylamide with apparent Km = 156 microM and 70 microM and Vmax = 50 and 215 nmol/min/mg, respectively. Both LTA4 and bestatin suppressed the intrinsic aminopeptidase activity of LTA4 hydrolase with apparent Ki values of 5.3 microM and 172 nM, respectively. Other metallohydrolase inhibitors tested did not reduce LTA4 hydrolase/aminopeptidase activity, with one exception; captopril, an inhibitor of angiotensin-converting enzyme, was as effective as bestatin. The results demonstrate a functional resemblance between LTA4 hydrolase and certain metallohydrolases, consistent with a molecular resemblance at their putative Zn2(+)-binding sites. The availability of a reversible, chemically stable inhibitor of LTA4 hydrolase may facilitate investigations on the role of LTB4 in inflammation, particularly the process termed transcellular biosynthesis.  相似文献   

20.
Recently, we characterized the export of leukotriene (LT) C4 from human eosinophils as a carrier-mediated process (Lam, B. K., Owen, W. F., Jr., Austen, K. F., and Soberman, R. J. (1989) J. Biol. Chem. 264, 12885-12889). To determine whether a similar mechanism regulates the release of leukotriene B4 (LTB4), human polymorphonuclear leukocytes (PMN) were preloaded with LTB4 by incubation with 25 microM leukotriene A4 (LTA4) at 0 degrees C for 60 min. PMN converted LTA4 to LTB4 in a time-dependent manner as determined by resolution of products by reverse-phase high performance liquid chromatography and quantitation by integrated optical density. When PMN preloaded with LTB4 were resuspended in buffer at 37 degrees C for 0-90 s, there occurred a time-dependent release of LTB4 but little formation or release of 20-hydroxy-LTB4 and 20-carboxy-LTB4. When PMN were preloaded with increasing amounts of intracellular LTB4 by incubation with 3.1-50.0 microM LTA4 and were then resuspended in buffer at 37 degrees C for 20 s, there occurred a concentration-dependent and saturable release of LTB4 with a Km of 798 pmol/10(7) cells and a Vmax of 383 pmol/10(7) cells/20 s. The release of LTB4 was temperature-sensitive with a Q10 of 3.0 and an energy of activation of 19.9 kcal/mol. The rate of LTB4 release at 37 degrees C is about 50 times the rate of 20-carboxy-LTB4 release. PMN preloaded with LTB4 and resuspended at 0 degree C for 1-60 min in the presence of 30 microM LTA5 progressively converted LTA5 to LTB5. The rate of LTB4 release at 0 degree C was inhibited over the entire time period, peaking at about 50% at 30 min. These results indicate that the release of LTB4 from PMN is a carrier-mediated process that is distinct from its biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号