首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The interaction between nitrate respiration and nitrogen fixation inAzospirillum lipoferum andA. brasilense was studied. All strains examined were capable of nitrogen fixation (acetylene reduction) under conditions of severe oxygen limitation in the presence of nitrate. A lag phase of about 1 h was observed for both nitrate reduction and nitrogenase activity corresponding to the period of induction of the dissimilatory nitrate reductase. Nitrogenase activity ceased when nitrate was exhausted suggesting that the reduction of nitrate to nitrite, rather than denitrification (the further reduction of nitrite to gas) is coupled to nitrogen fixation. The addition of nitrate to nitrate reductase negative mutants (nr-) ofAzospirillum did not stimulate nitrogenase activity. Under oxygen-limited conditionsA. brasilense andA. lipoferum were also shown to reduce nitrate to ammonia, which accumulated in the medium. Both species, including strains ofA. brasilense which do not possess a dissimilatory nitrite reductase (nir-) were also capable of reducing nitrous oxide to N2.  相似文献   

2.
Field bean (Vicia faba L.) cv. Maris Bead seeds were inoculated with Rhizobium Catalogue No. 1001, supplied by Rothamsted Experimental Station and grown in sand culture supplied with 15N-labelled nitrate at two concentrations. Plants were sampled at intervals throughout their growth for 15N and total N analysis. The rate of nitrate uptake was almost uniform up to pod-fill and was proportional to the nitrate concentration. Nodule weight was slightly depressed by the larger nitrate concentration at all samplings, and there was a corresponding reduction in the amount of atmospheric nitrogen fixed. However, at harvest the bean seeds from plants given most nitrate contained slightly more total N, as the enhanced nitrate uptake outweighed the reduction in fixation.  相似文献   

3.
Summary Symbiotic N2 fixation, NO 3 assimilation and protein accumulation in the shoots were measured simultaneously in alfalfa (Medicago sativa L.) grown in the field or in pots, in order to study how the balance between the two modes of nitrogen nutrition could be influenced by agronomic factors, such as harvest, mineral nitrogen supply and drought stress. During periods of rapid growth, fixation and assimilation may function simultaneously; they are antagonistic at the beginning and at the end of the growth cycle, when the nitrogen requirement of the plant is lower. When nitrogen nutrition does not limit growth, mineral nitrogen supply favours assimilation at the expense of fixation, but does not modify the amount of nitrogen accumulated, which is adjusted to the growth capacity of the plant. After cutting, nitrate assimilation compensated for the decrease in fixation and supplied the plant with the nitrogen required by the regrowth, the proliferation of which determined the fixation recovery. Drought stress decreased N2 fixation much more than NO 3 assimilation. The latter made growth recovery possible when water supply conditions became normal again. These results suggested the existence of an optimum level of nitrate assimilation, which differed depending on the age of the plants and allowed both maximum growth and fixing activity.  相似文献   

4.
As nitrogen is known to be a limiting factor for plant growth, we were interested in the relationship between soil microbial activity and the nitrogen assimilation of 5 different halophytes from 4 saline sites near the lake “Neusiedlersee”, Austria. The following were studied between May and October 1985: nitrogen fixation (15N2 and acetylene reduction): N-mineralization; several soil characteristics and in vivo nitrate reductase activity of roots and shoots of these plants. NO?3, org. N- and carboxylate contents of both roots and shoots, as well as the effect of NO?3-fertilization on the amounts of these substances, were determined on plants growing in the field during a 3-day period in September 1985. Fertilization led to a decrease in acetylene reduction activity at most sites, and an increase in the nitrate reductase activity of the shoots of all plants. Overall, carboxylate and organic nitrogen contents of these halophytes did not change in response to fertilization. Only in the roots of Aster tripolium and Atriplex hastata was there a marked increase in the nitrate reductase activity in response to fertilization. Species growing at the same site, such as Plantago maritima and Lepidium crassifolium showed contrasting levels of assimilatory activity. Apparent low rates of ammonification and nitrification were detected in soils from the 4 sites. The results are discussed in relation to the nitrogen and carbon economies of the microorganisms and plants.  相似文献   

5.
1. The sources of nitrogen for phytoplankton were determined for a bloom‐prone lake as a means of assessing the hypothesis that cyanobacteria dominate in eutrophic lakes because of their ability to fix nitrogen when the nitrogen : phosphorous (N : P) supply ratio is low and nitrogen a limiting resource. 2. Nitrogen fixation rates, estimated through acetylene reduction with 15N calibration, were compared with 15N‐tracer estimates of ammonium and nitrate uptake monthly during the ice‐free season of 1999. In addition, the natural N stable isotope composition of phytoplankton, nitrate and ammonium were measured biweekly and the contribution of N2 to the phytoplankton signature estimated with a mixing model. 3. Although cyanobacteria made up 81–98% of phytoplankton biomass during summer and autumn, both assays suggested minimal N acquisition through fixation (<9% for the in‐situ incubations; <2% for stable isotope analysis). Phytoplankton acquired N primarily as ammonium (82–98%), and secondarily as nitrate (15–18% in spring and autumn, but <5% in summer). Heterocyst densities of <3 per 100 fixer cells confirmed low reliance on fixation. 4. The lake showed symptoms of both light and nitrogen limitation. Cyanobacteria may have dominated by monopolizing benthic sources of ammonium, or by forming surface scums that shaded other algae.  相似文献   

6.
Summary The ability to fix nitrogen of 10 strains of the yeasts Rhodotorula, Bullera and Torulopsis and 4 strains of Pullularia, all isolated from soils and some supplied by other investigators was examined using both the heavy nitrogen (15N2) and acetylene reduction techniques. Rigorous standards for aseptic culture, freedom from combined nitrogen and precision of analysis were maintained. No fixation was observed in any of the organisms and the ability of any eucaryote cell to fix nitrogen is doubted. Suggestions for the previous reports of fixation are made.  相似文献   

7.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO inf3 -concentrations (Cmin) were not significantly influenced by nitrogen fixation.  相似文献   

8.
Four newly isolated marine strains of Beggiatoa and five freshwater strains were tested for nitrogen fixation in slush agar medium. All strains reduced acetylene when grown microaerobically in media containing a reduced sulfur source and lacking added combined nitrogen. The addition of 2 mmol N, as nitrate or ammonium salts, completely inhibited this reduction. Although not optimized for temperature or cell density, acetylene reduction rates ranged from 3.2 to 12 nmol·mg prot-1 min-1. Two freshwater strains did not grow well or reduce acetylene in medium lacking combined nitrogen if sulfide was replaced by thiosulfate. Two other strains grew well in liquid media lacking both combined nitrogen and reduced sulfur compounds but only under lowered concentrations of air. All freshwater strains grew well in medium containing nitrate as the combined nitrogen source. Since they did not reduce acetylene under these conditions, we infer that they can assimilate nitrate.  相似文献   

9.
It is well established that nitrate is a potent inhibitor of nodulation and nitrogen fixation in legumes. The objective of this study was to demonstrate the relative insensitivity of these processes to nitrate with Calopogonium mucunoides, a tropical South American perennial legume, native to the cerrado (savannah) region. It was found that nodule number was reduced by about half in the presence of high levels of nitrate (15 mM) but nodule growth (total nodule mass per plant) and nitrogen fixation (acetylene reduction activity and xylem sap ureide levels) were not affected. Other sources of N (ammonium and urea) were also without effect at these concentrations. At even higher concentrations (30 mM), nitrate did promote significant inhibition (ca. 50%) of acetylene reduction activity, but no significant reduction in xylem sap ureides was found. The extraordinary insensitivity of nodulation and N2 fixation of C. mucunoides to nitrate suggests that this species should be useful in studies aimed at elucidating the mechanisms of nitrate inhibition of these processes.  相似文献   

10.
We used an acetylene reduction assay to measure rates of nitrogen fixation on a 38-year-oldAlnus hirsuta plantation in central Korea. The diurnal pattern of acetylene reduction changed significantly during May, August, and October, typically varying by 3-fold throughout the course of the day. Maximum rates occurred at 3 p.m. in May and October, but at 6 p.m. in August. Increasing trends were evident during the early growing season, with sustained high rates from mid-May through late September; July had the highest rates, averaging 7.2 μmole g-1 dry nodule h-1. The average nodule biomass for this plantation was 220 kg ha ’. Rates of acetylene reduction were related to soil temperature, but not to soil moisture content. Combining these nodule biomass calculations with seasonal average acetylene reduction rates yielded an estimate of current annual nitrogen fixation of 60 kg N ha-1 for the plantation. This rate of annual nitrogen addition was very large in relation to the yearly nitrogen requirements of coniferous and deciduous forests in central Korea.  相似文献   

11.
The effect of nitrate on N2 fixation and the assimilation of fixed N2 in legume nodules was investigated by supplying nitrate to well established soybean (Glycine max L. Merr. cv Bragg)-Rhizobium japonicum (strain 3I1b110) symbioses. Three different techniques, acetylene reduction, 15N2 fixation and relative abundance of ureides ([ureides/(ureides + nitrate + α-amino nitrogen)] × 100) in xylem exudate, gave similar results for the effect of nitrate on N2 fixation by nodulated roots. After 2 days of treatment with 10 millimolar nitrate, acetylene reduction by nodulated roots was inhibited by 48% but there was no effect on either acetylene reduction by isolated bacteroids or in vitro activity of nodule cytoplasmic glutamine synthetase, glutamine oxoglutarate aminotransferase, xanthine dehydrogenase, uricase, or allantoinase. After 7 days, acetylene reduction by isolated bacteroids was almost completely inhibited but, except for glutamine oxoglutarate aminotransferase, there was still no effect on the nodule cytoplasmic enzymes. It was concluded that, when nitrate is supplied to an established symbiosis, inhibition of nodulated root N2 fixation precedes the loss of the potential of bacteroids to fix N2. This in turn precedes the loss of the potential of nodules to assimilate fixed N2.  相似文献   

12.
The acetylene reduction assay was used to measure nonsymbiotic and symbiotic nitrogen fixation in a weakly minerotrophic peatland throughout the ice-free season. Nonsymbiotic nitrogen fixation was found in surface materials and subsurface peat. In surface materials, nitrogenase activity measured in the field contributed about 0.6 kg N ha-1 yr-1, was closely associated with Sphagnum, but was not correlated with temperature between 12 and 27 C. No cyanobacteria were found in association with Sphagnum. In subsurface peat, nitrogenase activity measured in situ contributed no more than 0.4 kg N ha-1 yr-1 and was closely correlated with temperature between 7 and 21 C. There were uncertainites in these measurements due to presence of ethylene oxidizing activity and a long time lag. Symbiotic nitrogen fixation was found only in actinomycete-induced root nodules of Myrica gale L. Legumes were absent and the few lichens present lacked nitrogenase activity. Based on acetylene reduction assays, Myrica gale fixed about 35 kg N ha-1 yr-1. Nitrogenase activity in Myrica gale showed a strong seasonal pattern which varied little during three consecutive years even though water levels varied substantially. Nitrogen input to the peatland from nonsymbiotic nitrogen fixation was only 15% the amount contributed by bulk precipitation. Symbiotic fixation, in contrast, contributed approximately six times the amount in bulk precipitation.  相似文献   

13.
The sequence of events leading up to the establishment of symbiotic nitrogen-fixation were studied in two tropical legumes, Centrosema pubescens Benth, and Vigna unguiculata L. Walp. Parameters measured included fresh and dry weights, chlorophyll and leghaemoglobin contents, as well as the activities of NADH-nitrate reductase (EC 1.6.6.1), and nitrogenase (nitric-oxide reductase-EC 1.7.99.2) in plants that were inoculated with suitable rhizobia or which were watered with potassium nitrate. Dry weight and photosynthetic activity of both species followed the sigmoidal pattern which is characteristic of most plants. Growth was little different in either a qualitative or quantitative sense whether nitrogen was supplied as nitrate or through dinitrogen fixation. Although the biochemical sequence of events was dependent on the limiting sensitivities of the individual assays used, the data suggest that nitrate reductase is the first measurable enzymatic activity in the nodules (and roots), followed by acetylene reduction and leghaemoglobin in that order. It is possible therefore, that low levels of symbiotic nitrogen fixation occur in the nodules in the absence of leghaemoglobin. Nitrate reductase activity in C. pubescens nodules was negatively exponentially correlated with nitrogenase activity of the same nodules, suggesting a changing metabolism in old nodules. These data are discussed in terms of environmental and physical factors known to control nitrogen fixation.  相似文献   

14.
Summary The effects of twelve strains ofBradyrhizobium japonicum and ten cultivars of soybean (Glycine max (L.) Merr.) on plant and nodule weights, and acetylene reduction rates (33 to 41 days) were measured in the presence and absence of 6mM nitrate. No interactions between strains and cultivars were observed. Strain by nitrate interactions were found for plant and nodule weights, and acetylene reduction rates per gram of nodule. Cultivar by nitrate interactions were found for nodule weights, acetylene reduction rates per plant and per gram of nodule. Blackhawk with all strains, and all cultivars with strains 110 and CB 1809, seemed to be able to grow as well in the absence of nitrate (utilizing nodule fixation) as in its presence. The problems of identifying strains and cultivars with especially good nitrogen fixing ability in the presence of nitrate are discussed.  相似文献   

15.
Nitrogen fixation (acetylene reduction) rates were measured over an annual cycle in meadows of the seagrass Z. noltii and uncolonised sediments of the Bassin d'Arcachon, south-west France, using both slurry and whole core techniques. Measured rates using the slurry technique in Z. noltii colonised sediments were consistently higher than those determined in isolated cores. This was probably due to the release of labile organic carbon sources during preparation of the slurries. Thus, in colonised sediments the whole core technique may provide a more accurate estimate of in situ activity. Acetylene reduction rates measured by the whole core technique in colonised sediments were 1.8 to 4-fold greater, dependent upon the season, in the light compared with those measured in the dark, indicating that organic carbon released by the plant roots during photosynthesis was an important factor regulating nitrogen fixation. In contrast acetylene reduction rates in uncolonised sediments were independent of light.Addition of sodium molybdate, a specific inhibitor of sulphate reduction inhibited acetylene reduction activity in Z. noltii colonised sediments by > 80% as measured by both slurry and whole core techniques irrespective of the light regime, throughout the year inferring that sulphate reducing bacteria (SRB) were the dominant component of the nitrogen fixing microflora. A mutualistic relationship between Z. noltii and nitrogen fixing SRB in the rhizosphere, based on the exchange of organic carbon and fixed nitrogen is proposed. In uncolonised sediments sodium molybdate initially severely inhibited acetylene reduction rates, but the level of this inhibition declined over the course of the year. These data indicate that the nitrogen fixing SRB associated with the Zostera roots and rhizomes were progressively replaced by an aerobic population of nitrogen fixers associated with the decomposition of this recalcitrant high C:N ratio organic matter.Acetylene and sulphate reduction rates in the seagrass beds showed distinct summer maxima which correlated with a reduced availability of NH 4 + in the sediment and the growth cycle of Z. noltii in the Bassin. Overall, these data indicate that acetylene reduction (nitrogen fixation) activity in the rhizosphere of Z. noltii was regulated both by release of organic carbon from the plant roots and maintenance of low ammonium concentrations in the root zone due to efficient ammonium assimilation.Nitrogen fixation rates determined from acetylene reduction rates measured by the whole core technique ranged from 0.1 to 7.3 mg N m–2 d–1 in the Z. noltii beds and between 0.02 and 3.7 mg N m–2 d–1 in uncolonised sediments, dependent upon the season. Nitrogen fixation in the rhizosphere of Z. noltii was calculated to contribute between 0.4 and 1.1 g N m–2 y–1 or between 6.3 and 12% of the annual fixed nitrogen requirement of the plants. Heterotrophic nitrogen fixation therefore represents a substantial local input of fixed nitrogen to the sediments of this shallow coastal lagoon and contributes to the overall productivity of Z. noltii in this ecosystem.  相似文献   

16.
Azospirillum spp. participate in all steps of the nitrogen cycle except nitrification. They can fix molecular nitrogen and perform assimilatory nitrate reduction and nitrate respiration. Culture conditions have been defined under which nitrate is used both as terminal respiratory electron acceptor and as nitrogen source for growth. Nitrate and, possibly to a very limited extent, nitrite, but not sulfate, iron or fumarate support anaerobic respiration. Under anaerobic conditions, nitrate can also supply energy for nitrogen fixation but without supporting growth. Nitrate-dependent nitrogenase activity lasts only for 3–4 h until the enzymes of assimilatory nitrate reduction are synthesized. Nitrite accumulates during this period and inhibits nitrogenase activity at concentrations of about 1 mM.  相似文献   

17.
 Three-year-old Norway spruce trees were planted into a low-nitrogen mineral forest soil and supplied either with two different levels of mineral nitrogen (NH4NO3) or with a slow-release form of organic nitrogen (keratin). Supply of mineral nitrogen increased the concentrations of ammonium and nitrate in the soil solution and in CaCl2-extracts of the rhizosphere and bulk soil. In the soil solution, in all treatments nitrate concentrations were higher than ammonium concentrations, while in the soil extracts ammonium concentrations were often higher than nitrate concentrations. After 7 months of growth, 15N labelled ammonium or nitrate was added to the soil. Plants were harvested 2 weeks later. Keratin supply to the soil did not affect growth and nitrogen accumulation of the trees. In contrast, supply of mineral nitrogen increased shoot growth and increased the ratio of above-ground to below-ground growth. The proportion of needle biomass to total above-ground biomass was not increased by mineral N supply. The atom-% 15N was higher in younger needles than in older needles, and in younger needles higher in plants supplied with 15N-nitrate than in plants supplied with 15N-ammonium. The present data show that young Norway spruce plants take up nitrate even under conditions of high plant internal N levels. Received: 1 April 1998 / Accepted: 9 October 1998  相似文献   

18.
U. Benecke 《Plant and Soil》1970,33(1-3):30-48
Summary InAlnus viridis nodule growth relative to plant growth was inversely related to the quantity of nitrate added to nutrient solutions. Nodulated plants showed maximum growth when grown independently of supplied nitrogen and made better growth in its absence than unnodulated plants at any level of added nitrogen. Low levels of nitrate caused a depression of growth of nodulated plants, apparently by suppressing both nitrogen fixation and nodule growth. Nodules in nitrogen-free sand culture fixed atmospheric nitrogen at a rate of 6.6 mg/day/g nodule. Phosphorus deficiency was induced by low levels of phosphate and resulted in small plants with dark-green foliage. Root and nodule growth as a percentage of total plant growth and the percentage of total accumulated plant nitrogen below ground were greater at a root temperature of 11°C than 21°C. Thus at low root temperature processes other than nitrogen fixation were limiting to plant growth. Excised nodules were exposed to an N 2 15 -enriched atmosphere. A positive correlation between rate of nitrogen fixation and temperature was obtained, with optimum fixation occurring at about 20°C. It was shown that in spite of decreasing mean temperatures with increase in altitude, rate of nitrogen fixation by nodules of plants growing in the field increased with increase in altitude. This latter trend was deduced to be a reflection of the extent to which the field sites were nitrogen deficient in relation to climatically possible growth.  相似文献   

19.
Nitrous oxide reduction can consistently be demonstrated with high activities in cells of Azospirillum brasilense Sp 7 which are grown anaerobically in the presence of low amounts of nitrite. Azospirillum can even grow anaerobically with nitrous oxide in the absence of any other respiratory electron acceptor. Nitrous oxide reduction by Azospirillum is inhibited by acetylene, amytal and weakly by carbon monoxide. Azospirillum converts nitrous oxide to molecular nitrogen without the formation of ammonia. The cells must, therefore, be supplied with ammonia from nitrogen fixation during anaerobic growth with nitrous oxide. When no other nitrogen compound besides nitrous oxide is available in the medium, the bacteria synthesize nitrogenase from protein reserves in about 2 h. Nitrogenase synthesis is blocked by chloramphenicol under these conditions. In contrast, the addition of nitrate or nitrite to the medium represses the synthesis of nitrogenase. Nitrous oxide reduction by Azospirillum and other microorganisms is possibly of ecological significance, because the reaction performed by the bacteria may remove nitrous oxide from soils.  相似文献   

20.
Nitrogen fixation was measured in situ by the 15N tracer technique in the Bay of Quinte, Lake Ontario, and three lake enclosures with different nutrient enrichment. The fixation rates in the Bay were low but detectable during the summer season. The fixation activities were found to be correlated with the presence of nitrogen-fixing blue-green algae and the distribution of the algal species in the water was affected by nitrate enrichment. The study showed that, with the addition of nitrate, species not able to fix atmospheric nitrogen became predominant. However, in the absence of external nitrogen (i.e., nitrate), species able to fix nitrogen became dominant. Phosphorus enrichment alone did result in higher N-fixation rates in the water and, without the addition of phosphorus, the fixation rates are lower and fluctuate throughout the season, presumably dependent on the availability of phosphorus in the water.A comparison between the 15N-isotopic method and the acetylene reduction method is reported and the factors involved in the variations between these two methods are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号