首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation of LDL may contribute to its retention in atherosclerotic lesions. Previously, we showed that aggregated LDL induces and enters surface-connected compartments (SCCs) in human monocyte-derived macrophages by a process we have named patocytosis. Aggregated LDL was disaggregated and released from SCCs of macrophages when exposed to human lipoprotein-deficient serum. The serum factor that mediated aggregated LDL release and disaggregation was plasmin generated from plasminogen by macrophage urokinase plasminogen activator. We now show that activation of macrophages with PMA inhibits plasmin-mediated release of aggregated LDL from macrophages. With macrophage activation, plasminogen released about 60% less cholesterol and 63% less TCA-insoluble (125)I-aggregated LDL than when macrophages were not activated. Electron microscopy showed that PMA did not cause SCCs to close, which could have trapped aggregated LDL within the SCCs and limited protease access to aggregated LDL. Rather, PMA decreased macrophage generation of plasmin by 61%, and stimulated lysosomal degradation of aggregated LDL by more than 2-fold. Degradation was mediated by protein kinase C, shown by the finding that degradation was inhibited by the protein kinase C inhibitor G?6976. PMA-stimulated degradation of aggregated LDL was associated with a 3-fold increase in cholesterol esterification, consistent with hydrolysis and re-esterification of aggregated LDL-derived cholesteryl ester. In conclusion, macrophage activation with PMA causes more of the aggregated LDL that enters macrophage SCCs to be metabolized by lysosomes. This results in more cholesterol to be stored in macrophages and less aggregated LDL to be available for plasmin-mediated release from macrophage SCCs.  相似文献   

2.
Evidence suggests that aggregated low density lipoprotein (AgLDL) accumulates in atherosclerotic lesions. Previously, we showed that AgLDL induces and enters surface-connected compartments (SCC) in human monocyte-derived macrophages by a process we have named patocytosis. Most AgLDL taken up by these macrophages in the absence of serum is stored in SCC and remains undegraded. We now show that macrophages released AgLDL (prepared by vortexing or treatment with phospholipase C or sphingomyelinase) from their SCC when exposed to 10% human lipoprotein-deficient serum (LPDS). Macrophages also took up AgLDL in the presence of LPDS, but subsequently released it. In both cases, the released AgLDL was disaggregated. Although the AgLDL that macrophages took up could not pass through a 0.45-micrometer filter, >60% of AgLDL could pass this filter after release from the macrophages. Disaggregation of AgLDL was verified by gel-filtration chromatography and electron microscopy that also showed particles larger than LDL, reflecting fusion of LDL that aggregates. The factor in serum that mediated AgLDL release and disaggregation was plasmin generated from plasminogen by macrophage urokinase plasminogen activator. AgLDL release was decreased >90% by inhibitors of plasmin (epsilon-amino caproic acid and anti-plasminogen mAb), and also by inhibitors of urokinase plasminogen activator (plasminogen activator inhibitor-1 and anti-urokinase plasminogen activator mAb). Moreover, plasminogen could substitute for LPDS and produce similar macrophage release and disaggregation of AgLDL. Because only plasmin bound to the macrophage surface is protected from serum plasmin inhibitors, interaction of AgLDL with macrophages was necessary for reversal of its aggregation by LPDS. The released disaggregated LDL particles were competent to stimulate LDL receptor-mediated endocytosis in cultured fibroblasts. Macrophage-mediated disaggregation of aggregated and fused LDL is a mechanism for transforming LDL into lipoprotein structures size-consistent with lipid particles found in atherosclerotic lesions.  相似文献   

3.
Macrophage foam cell formation with native low density lipoprotein   总被引:5,自引:0,他引:5  
This investigation has elucidated a mechanism for development of macrophage foam cells when macrophages are incubated with native low density lipoprotein (LDL). LDL is believed to be the main source of cholesterol that accumulates in monocyte-derived macrophages within atherosclerotic plaques, but native LDL has not previously been shown to cause substantial cholesterol accumulation when incubated with macrophages. We have found that activation of human monocyte-derived macrophages with phorbol 12-myristate 13-acetate (PMA) stimulates LDL uptake and degradation and acyl-CoA:cholesterol acyltransferase-mediated esterification of LDL-derived cholesterol, resulting in massive macrophage cholesterol accumulation that could exceed 400 nmol/mg of cell protein. Cholesterol accumulation showed a biphasic linear LDL concentration dependence with LDL levels as high as 4 mg/ml, similar to LDL levels in artery intima. Protein kinase C mediated the PMA-stimulated macrophage uptake of LDL because the protein kinase C inhibitors, G?6983 and GF109203X, inhibited cholesterol accumulation. LDL receptors did not mediate macrophage cholesterol accumulation because accumulation occurred with reductively methylated LDL and in the presence of an anti-LDL receptor-blocking monoclonal antibody. LDL-induced cholesterol accumulation was not inhibited by antioxidants, was not accompanied by increased LDL binding to macrophages, did not depend on the apoB component of LDL, and was not down-regulated by prior cholesterol enrichment of macrophages. We have shown that the mechanism of LDL uptake by macrophages was PMA-stimulated endocytosis of LDL taken up as part of the bulk phase fluid (i.e. fluid phase endocytosis). The amount of LDL taken up with the bulk phase fluid was measured with [(3)H]sucrose and accounted for a minimum of 83% of the LDL cholesterol delivery and accumulation in PMA-activated macrophages. This novel mechanism of macrophage cholesterol accumulation shows that modification of LDL is not necessary for foam cell formation to occur. In addition, the findings direct attention to macrophage fluid phase endocytosis as a relevant pathway to target for modulating macrophage cholesterol accumulation in atherosclerosis.  相似文献   

4.
Increasing evidence suggests that the formation of oxidized low-density lipoprotein (Ox-LDL) in vivo is associated with the development of atherosclerotic vascular disease. We investigated the effects of Ox-LDL on two vascular endothelial cell coagulant properties, tissue factor expression, and protein C activation. The Ox-LDL increased human arterial and venous endothelial cell tissue factor activity, with 100 micrograms/ml of Ox-LDL increasing factor activity fourfold. Native LDL modified by incubation with cultured human arterial and venous endothelial cells also induced endothelial cell tissue factor activity. This modification was blocked by coincubation with the antioxidants, probucol or ascorbic acid. It was determined, based on inhibition by known scavenger receptor antagonists (fucoidin, dextran sulfate), that binding of Ox-LDL via the acetyl LDL (scavenger) receptor was partially responsible for the increase in tissue factor expression. Whereas endothelial cell tissue factor expression was increased by incubation with Ox-LDL, protein C activation was reduced approximately 80% by incubating cultured endothelial cells with Ox-LDL. The effect of Ox-LDL on protein C activation was not inhibited by antagonists to the scavenger receptor. These data indicating that an atherogenic lipoprotein can regulate key vascular coagulant activities provide an additional link between vascular disease and thrombosis.  相似文献   

5.
Atherogenesis and inflammation are dependent on macrophage function. Signalling pathways are involved in the modulation of the classical low density lipopotein (LDL)-receptor and scavenger receptors activities, which are both expressed by macrophages. This study has evaluated the role of activation of the protein kinase A and C pathways in human macrophages on the metabolism of lipid carried by native, acetylated and oxidised LDL. We found that [3H]oleate incorporation into cholesteryl ester and triacylglycerol is increased by an analogue of cAMP, but strongly inhibited by treatment with phorbol ester (PMA) (100 nM, 6 h) in the presence of acLDL and oxLDL and, to a lesser extent, nLDL. The mechanisms underlying the effects of the phorbol ester were investigated further. The protein kinase C inhibitors, calphostin C and herbimycin A, prevented the PMA-mediated inhibition of cholesterol esterification. PMA also reduced [14C]acetate incorporation into newly synthesised lipids especially in the presence of nLDL, and reduced the uptake of cholesterol carried by modified LDL. Furthermore, the effects of PMA were not modified by inhibition of proteases activities, ruling out the hypothesis that CD163, a scavenger receptor which is shed by the cell surface in the presence of phorbol, is involved in the phorbol-induced reduction of cholesterol accumulation in macrophages in response to LDL. We conclude that binding of modified LDL to macrophages induces an appropriate pattern of scavenger receptor phosphorylation which, in turn, determines the optimal receptor internalisation process. PMA activates PKC pathways and prevents the optimal ligand-induced phosphorylation of the receptors, compromising the processes of degradation of modified LDL. The data also suggest that this mechanism may be related to the decreased uptake by activated macrophages of lipid carried by modified lipoproteins during the early phases of inflammation (284).  相似文献   

6.
Enzymatic modification of low-density lipoprotein (LDL) as it probably occurs in the arterial intima drastically increases its cytotoxicity, which could be relevant for the progression of atherosclerotic lesions. LDL was treated with a protease and cholesterylesterase to generate a derivative similar to lesional LDL, with a high content of free cholesterol and fatty acids. Exposure of endothelial cells to the enzymatically modified lipoprotein (E-LDL), but not to native or oxidized LDL, resulted in programmed cell death. Apoptosis was triggered by apoptosis signal-regulating kinase 1 dependent phosphorylation of p38. Depletion and reconstitution experiments identified free fatty acids (FFA) as the triggers of this pathway. Levels of FFA in native LDL are low and the lipoprotein is therefore not cytotoxic; enzymatic cleavage of cholesterylesters liberates FFA that can rapidly trigger an apoptosis signaling cascade in neighboring cells. Blockade of this pathway can rescue cells from death.  相似文献   

7.
Exposure to Chlamydia pneumoniae is correlated with atherosclerosis in a variety of clinical and epidemiological studies, but how the organism may initiate and promote the disease is poorly understood. One pathogenic mechanism could involve modulation of macrophage function by C. pneumoniae. We recently demonstrated that C. pneumoniae induces macrophages to accumulate excess cholesterol and develop into foam cells, the hallmark of early atherosclerotic lesions. To determine if C. pneumoniae-induced foam cell formation involved increased uptake of low-density lipoprotein (LDL), the current study examined macrophage association of a fluorescent carbocyanine (DiI)-labeled LDL following infection. C. pneumoniae enhanced the association of DiI-LDL with macrophages in a dose-dependent manner with respect to both C. pneumoniae and DiI-LDL. Interestingly, increased association was inhibited by native LDL and occurred in the absence of oxidation byproducts and in the presence of antioxidants. However, enhanced DiI-LDL association occurred without the participation of the classical Apo B/E native LDL receptor, since C. pneumoniae increased DiI-LDL association and induced foam cell formation in macrophages isolated from LDL-receptor-deficient mice. Surprisingly, DiI-LDL association was inhibited not only by unlabeled native LDL but also by high-density lipoprotein, very low density lipoprotein, and oxidized LDL. These data indicate that exposure of macrophages to C. pneumoniae increases the uptake of LDL and foam cell formation by an LDL-receptor-independent mechanism.  相似文献   

8.
The presence of HOCl-modified epitopes inside and outside monocytes/macrophages and the presence of HOCl-modified apolipoprotein B in atherosclerotic lesions has initiated the present study to identify scavenger receptors that bind and internalize HOCl-low density lipoprotein (LDL). The uptake of HOCl-LDL by THP-1 macrophages was not saturable and led to cholesterol/cholesteryl ester accumulation. HOCl-LDL is not aggregated in culture medium, as measured by dynamic light scattering experiments, but internalization of HOCl-LDL could be inhibited in part by cytochalasin D, a microfilament disrupting agent. This indicates that HOCl-LDL is partially internalized by a pathway resembling phagocytosis-like internalization (in part by fluid-phase endocytosis) as measured with [14C]sucrose uptake. In contrast to uptake studies, binding of HOCl-LDL to THP-1 cells at 4 degrees C was specific and saturable, indicating that binding proteins and/or receptors are involved. Competition studies on THP-1 macrophages showed that HOCl-LDL does not compete for the uptake of acetylated LDL (a ligand to scavenger receptor class A) but strongly inhibits the uptake of copper-oxidized LDL (a ligand to CD36 and SR-BI). The binding specificity of HOCl-LDL to class B scavenger receptors could be demonstrated by Chinese hamster ovary cells overexpressing CD36 and SR-BI and specific blocking antibodies. The lipid moiety isolated from the HOCl-LDL particle did not compete for cell association of labeled HOCl-LDL to CD36 or SR-BI, suggesting that the protein moiety of HOCl-LDL is responsible for receptor recognition. Experiments with Chinese hamster ovary cells overexpressing scavenger receptor class A, type I, confirmed that LDL modified at physiologically relevant HOCl concentrations is not recognized by this receptor.  相似文献   

9.
Lectin-like oxidized LDL receptor (LOX)-1 is a type II membrane protein that belongs to the C-type lectin family of molecules, which can act as a cell-surface endocytosis receptor for atherogenic oxidized LDL. LOX-1 can support binding, internalization and proteolytic degradation of oxidized LDL, but not of significant amounts of acetylated LDL, which is a well-known high-affinity ligand for class A scavenger receptors and scavenger receptor expressed by endothelial cells (SR-EC). LOX-1 is initially synthesized as a 40-kDa precursor protein with N-linked high mannose-type carbohydrate, which is further glycosylated and processed into a 50-kDa mature form. LOX-1 expression is not constitutive, but can be induced by proinflammatory stimuli, such as tumour necrosis factor-alpha, transforming growth factor-beta and bacterial endotoxin, as well as angiotensin II, oxidized LDL itself and fluid shear stress. In addition, LOX-1 expression is detectable in cultured macrophages and activated vascular smooth muscle cells. In vivo, endothelial cells that cover early atherosclerotic lesions, and intimal macrophages and smooth muscle cells in advanced atherosclerotic plaques can express LOX-1. Cell-surface LOX-1 can be cleaved through some protease activities that are associated with the plasma membrane, and released into the culture media. Purification of soluble LOX-1 and the N-terminal amino-acid sequencing identified the two cleavage sites (Arg86-Ser87 and Lys89-Ser90), both of which are located in the membrane proximal extracellular domain of LOX-1. Measurement of soluble LOX-1 in vivo may provide a novel diagnostic tool for the evaluation and prediction of atherosclerosis and vascular disease.  相似文献   

10.
Triglyceride-rich lipoproteins (TGRLs) and low-density-lipoprotein (LDL) cholesterol are independent risk factors for coronary artery disease. We have previously proposed that the very low-density-lipoprotein (VLDL) receptor is one of the receptors required for foam cell formation by TGRLs in human macrophages. However, the VLDL receptor proteins have not been detected in atherosclerotic lesions of several animal models. Here we showed no VLDL receptor protein was detected in mouse macrophage cell lines (Raw264.7 and J774.2) or in mouse peritoneal macrophages in vitro. Furthermore, no VLDL receptor protein was detected in macrophages in atherosclerotic lesions of chow-fed apolipoprotein E-deficient or cholesterol-fed LDL receptor-deficient mice in vivo. In contrast, macrophage VLDL receptor protein was clearly detected in human macrophages in vitro and in atherosclerotic lesions in myocardial infarction-prone Watanabe-heritable hyperlipidemic (WHHLMI) rabbits in vivo. There are species differences in the localization of VLDL receptor protein in vitro and in vivo. Since VLDL receptor is expressed on macrophages in atheromatous plaques of both rabbit and human but not in mouse models, the mechanisms of atherogenesis and/or growth of atherosclerotic lesions in mouse models may be partly different from those of humans and rabbits.  相似文献   

11.
12.
Foam cells in atherosclerotic lesions are derived not only from blood monocytes but also from smooth muscle cells (SMC). To better understand the mechanisms by which SMC may become lipid-laden, we have studied the catabolism by cultured rabbit aortic SMC of LDL derived from atherosclerotic lesions (A-LDL) previously shown to be chemically modified. A-LDL was isolated either from homogenates of atherosclerotic plaques in human aortas by affinity chromatography and gel filtration, or from nonhomogenized extracts of plaque minces by ultracentrifugation and gel filtration. Internalization of A-LDL by SMC or fibroblasts appeared to be mediated primarily via the LDL receptor since: 1) either unlabeled LDL or A-LDL could inhibit the degradation of 125I-labeled A-LDL or of 125I-labeled LDL, 2) the uptake of both A-LDL and LDL, as estimated by their abilities to stimulate cholesterol esterification, was reduced in cells in which LDL receptor expression was down-regulated; and 3) the uptake of both [3H]cholesteryl ether-labeled A-LDL and LDL by normal fibroblasts was significant and could be inhibited by excess LDL, but was negligible in receptor-negative fibroblasts. At saturating concentrations of lipoproteins, maximum cholesterol esterification in SMC was greater for LDL than for A-LDL. Over a 48-h incubation, A-LDL, like LDL, was unable to induce cellular cholesteryl ester accumulation. Cross-competition studies suggested that either the affinity of A-LDL for the LDL receptor was less than that of LDL, or that some particles in A-LDL are not internalized by SMC. The latter alternative was supported by the observations that some A-LDL particles had undergone aggregation, especially at high concentrations, and that aggregated forms of A-LDL or plasma LDL failed to be internalized and degraded by SMC. Collectively, these results are consistent with recognition of some of the A-LDL particles by the LDL receptor, but also suggest that, at least under in vitro conditions, A-LDL is unlikely to induce lipid accumulation in SMC resulting in SMC-derived foam cells.  相似文献   

13.
Lipid-filled macrophages (foam cells) are a defining feature of atherosclerotic plaques. Foam cells contain lipid droplet-associated proteins that in other cell types regulate lipid turnover. In foam cell such proteins may directly affect lipid droplet formation and lipid efflux. Differentiated primary human monocytes or THP-1 cells were lipid loaded by incubation with aggregated low density lipoproteins (AgLDL) or VLDL resulting in macrophage foam cells with predominantly cholesterol ester or triglyceride-rich lipid droplets, respectively. Lipid droplets were isolated and major proteins identified by mass spectrometry, among them the apolipoprotein B-48 receptor that has not previously been recognized in this context. Expression of two proteins, perilipin and adipophilin, was quantified by Western blots of cell lysates. Perilipin content decreased and adipophilin increased with lipoprotein lipid loading regardless of intracellular neutral lipid composition. This protein expression pattern may hinder lipid turnover in macrophage foam cells, thereby increasing lipid content of atherosclerotic plaques.  相似文献   

14.
Much of the cholesterol that accumulates in atherosclerotic plaques is found within monocyte-macrophages transforming these cells into "foam cells." Native low density lipoprotein (LDL) does not cause foam cell formation. Treatment of LDL with cholesterol esterase converts LDL into cholesterol-rich liposomes having >90% cholesterol in unesterified form. Similar cholesterol-rich liposomes are found in early developing atherosclerotic plaques surrounding foam cells. We now show that cholesterol-rich liposomes produced from cholesterol esterase-treated LDL can cause human monocyte-macrophage foam cell formation inducing a 3-5-fold increase in macrophage cholesterol content of which >60% is esterified. Although cytochalasin D inhibited LDL liposome-induced macrophage cholesteryl ester accumulation, LDL liposomes did not enter macrophages by phagocytosis. Rather, the LDL liposomes induced and entered surface-connected compartments within the macrophages, a unique endocytic pathway in these cells that we call patocytosis. LDL liposome apoB rather than LDL liposome lipid mediated LDL liposome uptake by macrophages. This was shown by the findings that: 1) protease treatment of the LDL liposomes prevented macrophage cholesterol accumulation; 2) liposomes prepared from LDL lipid extracts did not cause macrophage cholesterol accumulation; and 3) purified apoB induced and accumulated within macrophage surface-connected compartments. Although apoB mediated the macrophage uptake of LDL liposomes, this uptake did not occur through LDL, LDL receptor-related protein, or scavenger receptors. Also, LDL liposome uptake was not sensitive to treatment of macrophages with trypsin or heparinase. Cholesterol esterase-mediated transformation of LDL into cholesterol-rich liposomes is an LDL modification that: 1) stimulates uptake of LDL cholesterol by apoB-dependent endocytosis into surface-connected compartments, and 2) causes human monocyte-macrophage foam cell formation.  相似文献   

15.
LDL deposition in the subendothelium of arterial walls is the initial event in the development of atherosclerosis. The deposited LDL undergoes oxidative modification by arterial wall cells to become oxidized LDL and consequently contributes to atherosclerotic formation. Using mouse strains C57BL/6J (B6) and C3H/HeJ (C3H), which differ markedly in susceptibility to atherosclerosis, we determined whether variation in subendothelial retention of apolipoprotein B (apoB)-containing lipoproteins constitutes a genetic component in atherosclerosis. Lipoprotein retention was quantitated by Western blot analysis to detect the presence of apoB in aortic walls before foam cells developed. In both dietary and apoE-deficient models, B6 mice exhibited up to a 2-fold increase of apoB in the aortic wall compared with C3H mice. This increase could not be attributed to differences in plasma lipid levels of the two strains. In vitro, endothelial cells from C3H mice took up more acetylated and oxidized LDL but not native LDL and converted more native LDL to oxidized LDL than did endothelial cells from B6 mice. C3H mice expressed more scavenger receptor A in their aortic wall than B6 mice. Thus, variation in the subendothelial retention of apoB-containing lipoproteins cannot explain the dramatic difference in atherosclerosis susceptibility between B6 and C3H mice, and endothelial cells may play a role in alleviating lipid accumulation in arterial walls.  相似文献   

16.
To test the hypothesis that LDL lacking of initial oxidation may also anticipate an essential role in the progression for atherosclerotic lesions, we studied the in vitro effect of foam cells induced by low density lipoprotein (LDL), oxidized (ox)-LDL or acetyl-LDL on smooth muscle cell (SMC) proliferation. Intraperitoneal macrophages collected from ICR mice were incubated with buffered saline LDL, ox-LDL or acetyl-LDL to induce foam cell formation. Porcine aortas with atherosclerotic lesions were collected from 5 pigs fed high cholesterol diets. The results indicate that foam cells induced by ox-LDL and acetyl-LDL, but not by LDL, promoted SMC proliferation. SMC proliferation was also increased by ruptured, ox-LDL- and acetyl-LDL- induced foam cells. Immunohistochemically, epitopes of the LDL, ox-LDL, and malondialdelyde (MDA)-LDL were present in atherosclerotic lesions, but the acetyl epitope was not. We suggest that foam cells, whether induced by the oxidized or acetyl or acetyl (unoxidized) form, play an essential role in the pathogenesis of atherosclerosis by stimulating SMC proliferation.  相似文献   

17.
The human monocyte/macrophage-like cell line U937 is a cholesterol auxotroph. Incubation of these cells in the growth medium in which delipidated fetal calf serum has been substituted for fetal calf serum depletes cellular cholesterol and inhibits growth. The cholesterol requirement of these cells for growth can be satisfied by human low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL), but not by high-density lipoprotein (HDL). U937 cells can bind and degrade LDL via a high-affinity site and this recognition is altered by acetylation of LDL. This indicates that these cells express relatively high LDL receptor activity and low levels of the acetyl-LDL receptor. The cells were used to study the role of cholesterol in lectin-mediated and fluid-phase endocytosis. Growth of the cells in the medium containing delipidated fetal calf serum results in impairment of both concanavalin A-mediated endocytosis of horseradish peroxidase and concanavalin A-independent endocytosis of Lucifer Yellow. Supplementation of the medium with cholesterol prevents cellular cholesterol depletion, supports growth and stimulates Lucifer Yellow endocytosis but fails to restore horseradish peroxidase endocytosis. However, if the cells are incubated in the presence of no less than 40 μg LDL protein/ml to maintain normal cell cholesterol levels, concanavalin A-mediated endocytosis of horseradish peroxidase is activated. The effect of LDL is specific since neither VLDL nor HDL3 at the same protein concentration activates horseradish peroxidase uptake by the cells. Furthermore, the activation of endocytosis by LDL is not inhibited by the inclusion of heparin or acetylation of the LDL indicating that binding of LDL to the LDL receptor is not required for these effects. The mediation of activation of horseradish peroxidase endocytosis by the lectin is presumed to involve binding of LDL to concanavalin A associated with the cell surface which in turn stimulates horseradish peroxidase binding and uptake by adsorptive endocytosis. The rate of fluid endocytosis and endosome formation seems to depend on cellular cholesterol content presumably because cholesterol is involved in maintaining the appropriate plasma membrane structure and fluidity.  相似文献   

18.
Endothelial injuries, including cell pyroptosis, are ongoing inflammatory processes with key roles in atherosclerosis development. Our previous report showed that the chemokine CXCL12 and its receptor CXCR7 are associated with the proliferation and angiogenesis of endothelial cells. Nevertheless, the mechanism underlying these effects on atherosclerotic lesions, especially on endothelial dysfunction, remains unknown. Here, we demonstrated that CXCR7 was upregulated in human carotid atherosclerotic plaques, apolipoprotein E knockout (ApoE?/?) mice fed with a high‐fat diet (HFD), and oxidized lipopolysaccharide‐treated (ox‐LDL) human umbilical vein endothelial cells (HUVECs). Further, the activation of CXCR7 reversed ox‐LDL‐induced HUVEC dysfunction, such as migration, tube formation, and cell pyroptosis; all of these protective effects were alleviated by inhibition of CXCR7. The NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasomes were also elevated in human carotid atherosclerotic plaques, ApoE?/? mice fed with HFD, and ox‐LDL‐injured HUVECs by regulation of caspase‐1 and interleukin (IL)‐1β expression. The activation of CXCR7 by TC14012 led to a decrease in atherosclerotic lesions in ApoE?/? mice fed with HFD. TC14012 also inhibited the expression of the NLRP3 inflammasome signaling pathway in vivo. In conclusion, our study suggests that CXCR7 plays an important role in regulating NLRP3 inflammasome‐modulated pyroptosis in HUVECs, providing a potential novel therapy for atherosclerosis.  相似文献   

19.
20.
Cholesteryl ester accumulation in arterial wall macrophages (foam cells) is a prominent feature of atherosclerotic lesions. We have previously shown that J774 macrophages accumulate large amounts of cholesteryl ester when incubated with unmodified low density lipoprotein (LDL) and that this is related to sluggish down-regulation of the J774 LDL receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. To further explore intracellular cholesterol metabolism and regulatory events in J774 macrophages, we studied the effect of inhibitors of acyl-CoA:cholesterol acyl transferase (ACAT) on the cells' ability to accumulate cholesterol and to down-regulate receptor and reductase. Treatment of J774 cells with LDL in the presence of ACAT inhibitor 58-035 (Sandoz) prevented both cholesteryl ester and total cholesterol accumulation. Furthermore, 58-035 markedly enhanced down-regulation of the J774 LDL receptor and 3-hydroxy-3-methylglutaryl-CoA reductase in the presence of LDL. In dose-response studies, down-regulation of the receptor by 58-035 paralleled its inhibition of ACAT activity. Compound 58-035 also increased the down-regulation of the J774 LDL receptor in the presence of 25-hydroxycholesterol and acetyl-LDL but not in the presence of cholesteryl hemisuccinate, which is not an ACAT substrate. The ability of 58-035 to enhance LDL receptor down-regulation was negated when cells were simultaneously incubated with recombinant high density lipoprotein3 discs, which promote cellular cholesterol efflux. In contrast to the findings with J774 macrophages, down-regulation of the human fibroblast LDL receptor was not enhanced by 58-035. These data suggest that in J774 macrophages, but not in fibroblasts, ACAT competes for a regulatory pool of intracellular cholesterol, contributing to diminished receptor and reductase down-regulation, LDL-cholesterol accumulation, and foam cell formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号