首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Cryptococcus albidus, originally isolated from mature strawberry fruits, was tested for antagonistic activity against Botrytis cinerea, the causal agent of grey mould in strawberries. Conidial germination and germ tube growth of conidia of B. cinerea were inhibited by a cell suspension of the antagonist in aqueous strawberry fruit pulp suspension (1%) after 6 and 24 hours of incubation. Application of a cell suspension (1 × 106 cells/ml) on detached strawberry leaf disks incubated at 10°C reduced incidence and conidiophore density of B. cinerea by 86 and 99%, respectively, but effectiveness was reduced at higher temperatures. Treatments with C. albidus during bloom of strawberries reduced incidence of grey mould on ripe strawberry fruits after harvest by 33, 28 and 21% in three years of field trials. The effectiveness of the yeast was increased when formulation substances (alginate, xanthan and cellulose) were added to the cell suspension.  相似文献   

2.
Several filamentous fungi can reduce disease incidence and suppress sporulation of Botrytis cinerea during early establishment and vegetative growth of pot roses. Two isolates of Ulocladium atrum were the most successful of those fungi tested, were consistently more effective than the fungicide, iprodione and not different from each other. Tween 80, added as a dispersant, had no effect on the efficacy of U. atrum. An isolate of Clonostachys rosea also gave better disease control than iprodione, although not to the levels given by isolates of U. atrum, nor was its behaviour consistent across experiments. Another isolate of C. rosea performed well in one trial, had no discernible effect in a second and was excluded from the third due to poor inoculum quality. Commercial Trichoderma harzianum preparations (Trichodex and Supresivit) failed to reduce disease incidence under the high disease pressure of these experiments, but did reduce sporulation of the pathogen relative to untreated controls.  相似文献   

3.
Epidemics of onion leaf spotcaused by Botrytis spp. depend onnecrotic leaf tissue for inoculum build up inthe crop. Ulocladium atrum Preuss. is astrong competitor on necrotic above-groundplant tissues. The potential of the antagonistto reduce colonisation of necrotic leaf tissueby Botrytis spp. and subsequentsporulation was studied in two fieldexperiments. U. atrum colonised necrotictissues and consistently reduced thesporulation of fungal competitors. Althoughincidence of Botrytis spp. was low,significantly lower spore loads of Botrytis spp. were found on spore trapslocated within U. atrum treated onionplots as compared to untreated control plots.The number of leaf spots caused by Botrytis spp. was low in both fieldexperiments but was significantly reduced by60% after U. atrum applications in thesecond experiment. Spraying of the fungicideRonilan resulted in the same control level.Results show that U. atrum has apotential for biological control against diseases caused by Botrytis spp. in onions.  相似文献   

4.
Aziz A  Heyraud A  Lambert B 《Planta》2004,218(5):767-774
Grapevine (Vitis vinifera L.) is vulnerable to a variety of pathogenic fungi, among them Botrytis cinerea, the causal agent of grey mould, is responsible for worldwide yield losses that would be even more important without a successful control that relies mainly on fungicides. In the present work we investigated an alternative way of using oligogalacturonides (OGA) to induce defense responses in grapevine and protection against B. cinerea. Kinetic experiments with grapevine cells showed that OGA induced a rapid and transient generation of H2O2, followed by differential expression of nine defense-related genes and stimulation of chitinase and -1,3-glucanase activities. Inhibition of OGA-induced oxidative burst by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, lowered induction levels of six genes and chitinase activity. Interestingly, the induction of three other genes and -1,3-glucanase activity were inhibited by K252a, a protein kinase inhibitor, but not by DPI. Treatment of grapevine leaves with OGA also reduced infection by B. cinerea by about 55–65%. Accordingly, DPI or K252a with or without OGA increased the susceptibility of grapevine leaves to B. cinerea. We suggest that treatment of grapevine with OGA elicits different signalling pathways, which might act in tandem with the oxidative burst to increase grapevine defense responses required for protection against B. cinerea.Abbreviations AOS Active oxygen species - Chit Chitinase - DPI Diphenylene iodonium - -Glu -1,3-Glucanase - GST Glutathione-S-transferase - MAP Mitogen-activated protein - OGA Oligogalacturonides - PAL Phenylalanine ammonia-lyase - PR Pathogenesis-related - PGIP Polygalacturonase inhibiting protein - PIN Serine-proteinase inhibitor - STS Stilbene synthase  相似文献   

5.
《Biological Control》2004,29(2):256-259
One to four applications of the antagonist Ulocladium atrum 302 were made to determine the effective timing and frequencies of applications needed to reduce the sporulation of Botrytis cinerea on potted roses under conditions conducive to development of gray mold. Potted rose foliage is maximally susceptible to B. cinerea infection when cuttings are rooted, just after rooting when vapor pressure deficits are changing and during and just after trimming of vegetative growth. Three independent trials were performed, with eight blocks each, and efficacy of treatments was assessed 2 weeks after the final application. A single application of U. atrum significantly reduced disease incidence and sporulation, but increasing numbers of applications increased effectiveness. No effect was observed on pathogen’s sporulation until the third application date, subsequent to wounding and the incomplete removal of senescent tissues. Hence, under conditions of high disease pressure, application of U. atrum can be delayed until cuttings are well established and fresh infection courts become available due to horticultural practices.  相似文献   

6.
A key was produced to describe 10 stages of development of linseed buds, flowers and capsules. Botrytis cinerea conidia germinated more rapidly and germ tubes grew longer on linseed stigmas, petals and mature senescing capsules than on green leaves, sepals and immature capsules. The proportion of conidia which germinated increased and the germ tubes continued growing for longer in the presence of linseed pollen and flower petal extracts. In controlled environment and field experiments, the response of buds, flowers and capsules to inoculation with B. cinerea changed with stage of development; few pre‐flowering buds developed symptoms (brown lesions, then grey mould), but high proportions of flowering and post‐flowering buds did so. Few immature green capsules developed symptoms and the proportion of capsules which developed symptoms increased as they matured. The presence of linseed pollen decreased the incubation period from inoculation with spore suspensions to appearance of B. cinerea symptoms on buds. A disease cycle was produced to suggest the changes in susceptibility of linseed to infection by B. cinerea conidia during bud, flower and capsule development.  相似文献   

7.
Summary The plant pathogenic hyphomyceteBotrytis cinerea has been shown to produce several trihydroxamate siderophores under conditions of low-iron stress. The total siderophores amounted to approximately 30 mg/l culture filtrate after 5 days of incubation in an asparagine/salt/glucose medium. Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) on a reversed phase indicated that ferrirhodin is the predominant siderophore of this fungus. Chemical characterization of the principal siderophore by fast-atom-bombardment (FAB) mass spectrometry, nuclear magnetic resonance (1H-NMR,13C-NMR) and comparison with a reference revealed the identity with ferrirhodin. NMR studies performed on desferrirhodin (desferrirhodin) in dimethylsulfoxide and water revealed the existence of two conformers in D2O resulting from acis-trans isomerization of the hydroxamic acid groups. Comparative iron-uptake studies showed the following order of uptake inB. cinerea: ferrichrysin (100%), ferrirubin (57%), ferrirhodin (45%), hexahydroferrirhodin (45%), coprogen 6%. Concentration-dependent uptake of ferrirhodin resulted in saturation kinetics only in the low concentration range of 0–30 M (K m = 2.5 M,V max = 80 pmol min–1 mg(–1). A non-saturable, linear uptake was observed in the high concentration range of 30–80 M. The low concentration range appears to be the physiologically significant range, where siderophore-mediated iron transport inB. cinerea occurs.  相似文献   

8.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

9.
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.  相似文献   

10.
Emasculated flowers of several black currant cultivars were pollinated and then inoculated with dry conidia of Botrytis cinerea in the field and glasshouse. The infection of pistils was examined by U.V. fluorescence microscopy and the incidence of premature flower abscission recorded. Conidia germinated in the stigmatic fluid in all cultivars and hyphae spread symptomlessly throughout the style to infect the pericarp and ovules. Of six cultivars inoculated in the field, cv. Ojebyn was the most, and cv. Ben More the least resistant to flower shedding. Natural infection of stigmas by B. cinerea was common in the field and a high proportion of apparently healthy non-inoculated flowers which abscissed were found to contain infected ovules. Fewer flowers abscissed if inoculations were made 6 days after pollination. Symptomless or latent infection of black currant flowers by B. cinerea may be a contributory cause of premature abscission of developing fruits, or ‘running-off’, recorded in these experiments.  相似文献   

11.
Glasshouse trials were performed to investigate the control of the parasitic weed Striga hermonthica by Fusarium nygamai and the performance of the host plant sorghum (Sorghum bicolor) using different inoculum substrates and inoculum amounts of the fungus. Optimal constant and alternating temperatures for the growth of the fungus were 25°C and 30/20°C, respectively. Striga incidence was decreased up to 100% when the fungus was incorporated into the soil preplanting. Emerged Striga plants at different stages of growth up to the flowering stage were killed by the fungus when the fungus was applied postemergent. In root-chamber trials none of the Striga seeds germinated when 10 ml inoculum suspension of 8 × 106 spores/ml of F. nygamai was applied on seeds of the parasitic weed sprinkled on the surface of filter paper. F. nygamai has potential as a bioherbicide for Striga control. Further studies regarding its performance under field conditions and its safety to the environment and humans should be assessed.  相似文献   

12.
As a notable biocontrol agent, Trichoderma harzianum can antagonize a diverse array of phytopathogenic fungi, including Botrytis cinerea, Rhizoctonia solani and Fusarium oxysporum. Elucidating the biocontrol mechanism of T. harzianum in response to the pathogens enables it to be exploited in the control of plant diseases. Two-dimensional gel electrophoresis (2-DE) was performed to obtain secreted protein patterns of T. harzianum ETS 323, grown in media that contained glucose, a mixture of glucose and deactivated B. cinerea mycelia, deactivated B. cinerea mycelia or deactivated T. harzianum mycelia. Selected protein spots were identified using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Ninety one out of 100 excised protein spots were analyzed and some proteins were sequence identified. Of these, one l-amino acid oxidase (LAAO) and two endochitinases were uniquely induced in the media that contained deactivated B. cinerea mycelia as the sole carbon source. Activities of the cell wall-degrading enzymes (CWDEs), including β-1,3-glucanases, β-1,6-glucanases, chitinases, proteases and xylanases, were significantly higher in media with deactivated B. cinerea mycelia than in other media. This finding suggests that the cell wall of B. cinerea is indeed the primary target of T. harzianum ETS 323 in the biocontrol mechanism. The possible roles of LAAO and xylanase were also discussed.  相似文献   

13.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

14.

Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

  相似文献   

15.
During screening of twenty six essential oils against Botrytis cinerea, the essential oils of the ten plants viz. Chenopodium ambrosioides, Eucalyptus citriodora, Eupatorium cannabinum, Lawsonia inermis, Ocimum canum, O. gratissimum, O. sanctum, Prunus persica, Zingiber cassumunar and Z. officinale were found to exhibit absolute fungitoxic activity (100% growth inhibition). The essential oils of O. sanctum, P. persica and Z. officinale were selected for further investigation because these oils showed lower Minimum Inhibitory Concentration (MIC) as compared to the other fungitoxic oils. The selected oils were subsequently standardized through physico-chemical and fungitoxic properties. The MIC values of O. sanctum, P. persica and Z. officinale were found to be 200, 100 and 100 ppm (mg/l) respectively. The oils showed fungistatic nature at their respective MIC. The oils were thermostable, and exhibited a wide range of fungitoxicity against 15 other post-harvest fungal pathogens. The oils had the potency to withstand high inoculum density. The antifungal potency of oils was found to be greater in comparison to some prevalent synthetic fungicides. Practical applicability of the essential oils was observed in control of grey mould of grapes caused by B. cinerea during storage. The O. sanctum- and P. persica-oil-treated grapes showed enhancement of storage life up to 5 and 4 days respectively. The storage life of Z. officinale-oil-treated grapes was found to be enhanced up to 6 days. The oils did not exhibit any phytotoxic effect on the fruit peel. Therefore, the oils could be recommended as a potential source of ecofriendly botanical fungicide, after long term and wide ranging trials.  相似文献   

16.
Localization and changes in the activity of -glucosidase were investigated in wheat caryopsis and glumes infected with Stagonospora nodorum as well as in lily ovaries and harvested tomato fruits both inoculated with Botrytis cinerea. It was established that the pathogen invasion caused splitting of wheat seed coat, xylem blocking in lily carpel and decay in tomato fruits. B. cinerea invasion evoked disorders of the embryogenesis accompanied by a decreased activity of -glucosidase in all ovules. The activity of the enzyme was not changed considerably in wheat seeds as the infection occurred in the late embryonal stages and the embryonal processes were not affected. In the seeds of harvested tomatoes distant from the invaded area the enzyme activity was not changed as well.  相似文献   

17.
【目的】探究甲基营养型芽孢杆菌(Bacillus methylotrophicus)对植物病原菌玉蜀黍尾孢菌(Cercospora zeae-maydis Tehon et Daniels)、链格菌(Alternaria alternate)和灰葡萄孢菌(Botrytis cinerea)的拮抗作用并鉴定抗菌物质,为其病害防治提供优良生防菌。【方法】平板对峙法初筛和杯碟法筛选拮抗菌株;微生物形态学和16S rRNA基因鉴定拮抗菌株;薄层色谱(TLC)和编码基因分析鉴定抗菌物质;玉米田间生防试验评估拮抗菌对3种病原菌的防治效果。【结果】筛选到一株能够明显拮抗玉蜀黍尾孢菌、链格菌和灰葡萄孢菌的甲基营养型芽孢杆菌B-1841,抑制率分别为65.95%、71.04%和46.69%,抑菌物质为伊枯草菌素类脂肽。玉米田间生防试验表明,菌株B-1841对玉蜀黍尾孢菌、链格菌和灰葡萄孢菌感染的玉米病害均有防治效果,相对防效分别为60.25%、69.89%和45.21%。【结论】甲基营养型芽孢杆菌B-1841对玉蜀黍尾孢菌、链格菌和灰葡萄孢菌引起的病害有防治作用,在农作物真菌病害防治方面具有潜在应用价值。  相似文献   

18.
Intraplant epizootics of entomopathogens,Beauveria bassiana (Balsamo) Vuillemin, andNosema pyrausta (Paillot) were studied in a corn,Zea mays L., agroecosystem. Egg masses of the European corn borer,Ostrinia nubilalis (Hübner), infected withN. pyrausta were placed on midwhorl-stage corn plants. Conidia ofB. bassiana were applied in an aqueous suspension. Frass from the initial insects remaining within the plants was contaminated with sufficientN. pyrausta spores to infest 80% of the filial generation in each year of a 2-yr study. Viability ofN. pyrausta within the frass was monitored throughout the winter. Potential for impact of this inoculum on the filial generation is discussed. Conidia from cadavers of the European corn borer that were killed by the initial inoculum ofB. bassiana and/or conidia from the initial inoculum ofB. bassiana significantly reduced tunneling by the filial generation of the European corn borer. However, neither the concentration ofB. bassiana nor the age of the larvae exposed toB. bassiana, had any significant (P<.05) effect on tunneling by the 2nd-generation larvae. This paper reports the results of research only. Mention of a pesticide in this paper does not constitute a recommendation for use by the U.S. Department of Agriculture or cooperators, nor does it imply registration under FIFRA as amended.  相似文献   

19.
Streptomyces is a genus known for its ability to protect plants against many pathogens and various strains of this bacteria have been used as biological control agents. In this study, the efficacy of Streptomyces philanthi RM-1-138, S. philanthi RL-1-178, and Streptomyce mycarofaciens SS-2-243 to control various strains of Botrytis cinerea was evaluated both in vitro and in vivo. In vitro studies using confrontation tests on PDA plates indicated that the three strains of Streptomyces spp. inhibited the growth of 41 strains of B. cinerea. Volatile compounds produced by Streptomyces spp. had an influence on the growth of ten strains of B. cinerea while its culture filtrate at low concentration (diluted at 10?3) showed a complete inhibition (100%) of spore germination of B. cinerea strain BC1. A significant protection efficacy of tomato against B. cinerea was observed on both whole plant test (57.4%) and detached leaf test (60.1%) with S. philanti RM-1-138. Moreover, this antagonistic strain had a preventive and a curative effect. These results indicated that S. philanthi RM-1-138 may have the potential to control gray mold caused by B. cinerea on tomato but further work is required to enhance its efficacy and its survival in planta.  相似文献   

20.
Byzova M  Verduyn C  De Brouwer D  De Block M 《Planta》2004,218(3):379-387
Oilseed rape (Brassica napus L.) genotypes with no or small petals are thought to have advantages in photosynthetic activity. The flowers of field-grown oilseed rape form a bright-yellow canopy that reflects and absorbs nearly 60% of the photosynthetically active radiation (PAR), causing a severe yield penalty. Reducing the size of the petals and/or removing the reflecting colour will improve the transmission of PAR to the leaves and is expected to increase the crop productivity. In this study the hairpin RNA-mediated (hpRNA) gene silencing technology was implemented in Arabidopsis thaliana (L.) Heynh. and B. napus to silence B-type MADS-box floral organ identity genes in a second-whorl-specific manner. In Arabidopsis, silencing of B-type MADS-box genes was obtained by expressing B. napus APETALA3 (BAP3) or PISTILLATA (BPI) homologous self-complementary hpRNA constructs under control of the Arabidopsis A-type MADS-box gene APETALA1 (AP1) promoter. In B. napus, silencing of the BPI gene family was achieved by expressing a similar hpRNA construct as used in Arabidopsis under the control of a chimeric promoter consisting of a modified petal-specific Arabidopsis AP3 promoter fragment fused to the AP1 promoter. In this way, transgenic plants were generated producing male fertile flowers in which the petals were converted into sepals (Arabidopsis) or into sepaloid petals (B. napus). These novel flower phenotypes were stable and heritable in both species.Abbreviations PAR photosynthetically active radiation - ST-LS1 potato light-inducible tissue-specific ST-LS1 gene - GUS -glucuronidase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号