首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
固氧酶对氧极其敏感。特别是分离纯化后的固氮酶两组分——MoFe蛋白和Fe蛋白对氧的敏感性更加明显。被氧钝化后的固氮酶部分地或全部地失去固氮活性。但是,在自然界里存在于好气性自生固氮菌、光合固氮的藻类及豆科植物根瘤中的固氮酶却能在有氧的环境下  相似文献   

2.
锰对部分缺失金属原子簇的固氮酶钼铁蛋白的重组作用   总被引:1,自引:0,他引:1  
棕色固氮菌(Azotobacter vinelandii)固氮酶钼铁蛋白经邻菲口罗啉和O2 处理后,变为部分缺失P-cluster和FeMoco 的失活蛋白,经与由KMnO4、高柠檬酸铁、Na2S和二硫苏糖醇组成的重组液保温后,重组蛋白的吸收光谱和对C2H2、H+ 和N2 的还原活性都恢复至与还原钼铁蛋白相似的状态,而它的α-螺旋度和在380—550 nm 、620—670 nm 的CD谱虽有明显的恢复,但仍与还原钼铁蛋白有所不同。表明:(1)重组蛋白液既含有在缺失金属原子簇的MoFe蛋白与含Mn 重组液重组过程中可能组装的MnFe 蛋白,又含有在邻菲口罗啉和O2 处理后金属原子簇仍旧完整的MoFe蛋白;(2)MnFe蛋白和MoFe蛋白在固氮能力上可能是相似的,而在结构上却可能略有差异  相似文献   

3.
本文报导了以Na_2MoO_4-KBH_4系统模拟固氮酶催化反应的研究工作。钼酸钠是一种最简单的钼的无机化合物。在硼氢化钾存在的情况下,钼酸钠就能催化乙炔还原为乙烯的反应。以反应初速度计,其比活达4.1moleC_2H_4/分·mole Mo,约为固氮酶活性的1%。米氏常数为0.77大气压、2.78×10~(-2)M。表观活化能为6.5千卡/克分子。处于活性状态的钼不是单核的,而可能是双核的。虽然乙炔还原的产物除乙烯外还有乙烷生成,但乙烯不能作为反应底物被还原。乙炔还原为乙烯和乙炔还原为乙烷的反应二者不相关。它们是由不同的活性钼络合物所催化。以20种不同的可作为钼的配位体的有机化合物对Na_2MoO_4-KBH_4系统乙炔还原催化反应的影响在相同条件下进行比较,可以看到一些有趣的规律。α、α′-二巯基己二酸-Na_2MoO_4-KBH_4系统的催化活性最高。二巯基乙烷-Na_2MoO_4-KBH_4系统只表现催化乙炔还原为乙烯的活性,反应产物中只有乙烯而没有乙烷或其他产物生成。象固氮酶一样,Na_2MoO_4-KBH_4系统还具有催化乙腈还原的活性。在相同条件下用钨代替钼,无论Na_2WO_4-KBH_4系统还是半胱氨酸-Na_2MoO_4-KBH_4系统都不表现催化乙炔还原为乙烯的活性。解释了含钨的固氮酶无反应活性的原因。同时还解释了在含钨的固氮酶及其他含钨的“钼”酶中钨不能与相应的蛋白有效地结合这一现象。本文还就Na_2MoO_4-KBH_4固氮酶模型系统的作用,反应规律,以及配位体和不同配位基团的作用等进行了讨论,并对当前通过模型系统来研究固氮酶的结构与功能的工作中的一些问题提出了作者的看法。  相似文献   

4.
本文报导了以Na_2MoO_4-KBH_4系统模拟固氮酶催化反应的研究工作。钼酸钠是一种最简单的钼的无机化合物。在硼氢化钾存在的情况下,钼酸钠就能催化乙炔还原为乙烯的反应。以反应初速度计,其比活达4.1mole C_2H_4/分·mole Mo,约为固氮酶活性的1%。米氏常数为0.77大气压、2.78×10~(-2)M。表观活化能为6.5千卡/克分子。处于活性状态的钼不是单核的,而可能是双核的。虽然乙炔还原的产物除乙烯外还有乙烷生成,但乙烯不能作为反应底物被还原。乙炔还原为乙烯和乙炔还原为乙烷的反应二者不相关。它们是由不同的活性钼络合物所催化。以20种不同的可作为钼的配位体的有机化合物对Na_2MoO_4-KBH_4系统乙炔还原催化反应的影响在相同条件下进行比较,可以看到一些有趣的规律。α、α′-二巯基己二酸-Na_2MoO_4-KBH_4系统的催化活性最高。二巯基乙烷-Na_2MoO_4-KBH_4系统只表现催化乙炔还原为乙烯的活性,反应产物中只有乙烯而没有乙烷或其他产物生成。象固氮酶一样,Na_MoO_4-KBH_4系统还具有催化乙腈还原的活性。在相同条件下用钨代替钼,无论Na_2WO_4-KBH_4系统还是半胱氨酸-Na_2MoO_4-KBH_4系统部不表现催化乙炔还原为乙烯的活性。解释了含钨的固氮酶无反应潘性的原因。同时还解释了在含钨的同氮酶及其他含钨的“钼”酶中钨不能与相应的蛋白有效地结合这一现象。本文还就Na_2MoO_4-KBH_4同氮酶模型系统的作用,反应规律,以及配位体和不同配位基团的作用等进行了讨论,并对当前通过模型系统来研究固氮酶的结构与功能的工作中的一些问题提出了作者的看法。  相似文献   

5.
Guo HM  Luo YL  Zhou WL 《生理科学进展》2010,41(3):189-192
ATP不但是各种细胞的能量来源,而且更是一种自分泌或旁分泌的胞外信使,参与细胞一系列的生物学效应。ATP从呼吸道上皮细胞中释放,在调节呼吸道表面液体量的平衡、黏膜纤毛清除能力和呼吸道防御功能方面起重要作用,并参与呼吸道疾病及炎症的发生。本文对ATP从呼吸道上皮释放的途径,ATP调节呼吸道上皮离子转运的机制,ATP对呼吸道平滑肌的双重调节作用,以及ATP参与呼吸道疾病和炎症的发生机制等方面予以综述。  相似文献   

6.
胞外ATP在男性生殖道中的作用   总被引:2,自引:0,他引:2  
Zhou WL  Zuo WL  Ruan YC  Wang Z  DU JY  Xiong Y  Chan HC 《生理学报》2007,59(4):487-494
胞外ATP除了能广泛作为神经递质外,还被认为是一种旁分泌或自分泌因子。ATP从男性生殖道中的精子或上皮细胞中释放,在调节各种生殖生理功能中起多种作用。本文综述了ATP调节附睾上皮细胞阴离子分泌的信号通路,阐述了ATP对依赖上皮细胞的输精管平滑肌收缩的调节机制,讨论了ATP在男性生殖道中的功能和作用。  相似文献   

7.
水在有机介质酶催化反应中的作用   总被引:11,自引:0,他引:11  
本文针对有机介质酶催化反应中水的作用,结合最新研究进展作了综合评述,指出水在有机介质中对维持酶的活力构象起到“润滑剂”作用,水活度是衡量水作用的有效参数。分析了酶的水化程度,水化方式,有机溶剂及固定化载体对酶活力的影响及其作用机理,并对反应过程中水的控制问题进行了讨论。  相似文献   

8.
本文针对有机介质酶催化反应中水的作用,结合最新研究进展作了综合评述。指出水在有机介质中对维持酶的活力构象起到“润滑剂”作用,水活度是衡量水作用的有效参数。分析了酶的水化程度、水化方式、有机溶剂及固定化载体对酶活力的影响及其作用机理,并对反应过程中水的控制问题进行了讨论。  相似文献   

9.
ATP敏感性钾通道对K^+有较高的选择性,且有相当高的电导。磺酰脲类药物对ATP敏感性钾通道有特异的抑制作用,而一些开放剂对其有激活作用。缺血或其它代谢抑制时,ATP浓度下降,腺苷产生产增加,两者激活ATP敏感性钾通道,对心肌缺血再灌注损伤起保持作用;ATP敏感性钾通道开放剂对高血压有一定的治疗效用。  相似文献   

10.
液泡ATP酶(vacuolar ATPases,V-ATPases)是真核细胞中高度保守的一类大型多亚基复合物,广泛分布于质膜及溶酶体、内体、囊泡等细胞内膜系统,能够借助水解ATP产生的能量控制H+的跨膜转运。V-ATPases通过对细胞内外多种结构的酸化作用调控着一系列重要的细胞活动,如膜运输、蛋白质加工和降解等。近年来,V-ATPases在肿瘤形成中的功能正逐渐成为研究热点。本文重点综述了V-ATPases通过调控细胞内外环境pH,从而在肿瘤发生过程中所行使的多种功能,例如V-ATPases抑制肿瘤细胞凋亡,参与肿瘤细胞自噬,促进肿瘤的侵袭、迁移与增殖,以及参与肿瘤耐药性的产生等。阐明V-ATPases在肿瘤中的作用机制有望为肿瘤治疗策略的探索、新型药物的开发以及相关科学研究的开展提供参考。  相似文献   

11.
首先概括了离子液体中生物催化反应的特点;阐述了离子液体在生物催化反应中的应用进展,主要包括:蛋白酶催化的反应、脂肪酶催化的反应、氧化还原酶催化的反应以及其它酶催化的反应.离子液体通常起到了提高酶的活性或稳定性,并提高产物收率和选择性的作用;并展望了离子液体作为溶剂和共溶剂在生物催化反应中的发展前景.  相似文献   

12.
胞外ATP的作用,来源和命运   总被引:14,自引:0,他引:14  
胞外ATP(三磷酸腺苷)浓度的改变,影响许多重要的生理功能,诸如神经递质作用、上板凝聚、篾这紧张、心脏功能肉收缩等。胞外ATP作为递质直接影响神经效应器接点和/调制其它神经递质以及通过第二信使调节细胞活动,都是由膜上不同的ATP受体或激活的离子通道介导的。本文从胞外ATP的递质作用的发现与确证,胞外ATP的来源、ATP的受体、ATP介导的反应及包外ATP的降解等几方面对胞外ATP研究的进展作一综述  相似文献   

13.
ATP是细胞的重要能源。传统观点认为细胞内ATP水平相对恒定,不会出现持续升高。而新的研究提示:在能量过剩状态下,ATP水平在多种组织中持续升高,这种升高与能量过剩引起的代谢紊乱密切相关,但其升高机制尚不清楚。本文通过回顾本研究组前期实验结果和文献,论述调节细胞内ATP水平的多种因素,其中涉及超氧离子、线粒体炫、抗氧化剂、抗凋亡蛋白(Bcl-xL)、AMP活化的蛋白激酶以及二甲双胍等,重点讨论这些因素改变ATP设定点的作用及其潜在机制,评估它们在细胞内ATP水平升高或降低中扮演的角色。本文以能量过剩的分子机制为中心,探讨细胞内ATP水平升高导致胰岛素抵抗的分子机制,同时阐明新的实验结果与ATP传统观点之间发生矛盾的可能原因。作者认为在肥胖条件下,ATP水平升高是细胞能量过剩的重要信号,该信号通过激活反馈通路抑制线粒体功能,造成糖脂代谢紊乱。  相似文献   

14.
胰岛β细胞胰岛素分泌过程是受多种因素协调精确控制的,ATP合成酶在这一调控网络中起着重要作用.高糖、高脂及炎症细胞因子,通过不同的信号通路,引起线粒体膜电位改变及/或ATP合成酶核心亚基表达下降,导致ATP合成速率下降,是β胰岛素分泌障碍发生的共同核心环节,在2型糖尿病病理生理过程中起了关键性作用.糖尿病动物胰岛β细胞内的ATP含量较正常β细胞明显降低,而上调2型糖尿病患者胰岛细胞ATP合成酶β亚基表达能提高ATP合成速率,增加细胞ATP含量并逆转损伤的胰岛素分泌功能.目前的研究提示,亮氨酸、肠抑素(enterostatin)及过氧化物酶体增殖物激活受体γ(PPAR-γ)能通过调控ATP合成酶β亚基表达或活性提高细胞ATP合成速率,这为改善β细胞功能障碍提供了新的思路和信息.  相似文献   

15.
研究了混养型光合细菌Rhodopseudomonas capsulata N-3 氢酶与固氮酶之间的联系,观察到:1.以苹果酸(30毫克分子)为碳源,谷氨酸(5毫克分子)为氮源,营光合异养生长的菌体由固氮酶催化释放出大量的分子氢,光合放氢的过程完全依赖于光和外加电子供体,NH_4~ 对这一过程有明显抑制作用。2.营光合异养生长的光合细菌具活跃的氢酶,是膜结合态,能以多种生理活性物质,如NADP,反丁烯二酸,硝酸盐,氧及一些氧化还原染料为受体,吸取分子氢,这一过程显著地被NH_4~ 所促进。3.氢酶催化分子氢,支持光合固氮活性,这一固氮活性对氧的酶感性显著下降。4.当有机底物浓度不足时,分子氢所支持的固氮活性更为有效,有机底物浓度处于过量时,分子氢不再支持固氮。5.乙炔对氢酶活性具不可逆的抑止作用,氢酶被抑止后,固氮酶所催化的光合放氢显著剧增。 基于上述结果,对氢酶和固氮酶在细菌光合固氮中相互联系及其对光合细菌光能异养和光能自养两种生长方式间的转换的可能作用进行了讨论。  相似文献   

16.
实时荧光定量PCR是近年发展起来的一种新的实时定量检测特定核酸技术,它是核酸探针技术、荧光共振能量传递技术和PCR技术的有机结合。与常规PCR相比,它具有特异性更强、能有效解决PCR污染问题、自动化程度高等特点,扩大了PCR的应用范围。概述实时荧光定量PCR技术在固氮酶(nifH)基因检测中的应用与研究进展,并探讨该技术的发展和应用前景。  相似文献   

17.
DNA双链断裂修复缺陷易导致细胞基因组稳定性失衡、细胞发生癌变或死亡。真核生物主要通过同源重组和非同源末端连接两条途径来修复双链断裂。近年来发现多种ATP依赖型的染色质重塑蛋白复合物,包括RSC、INO80、Fun30、SWI/SNF和SWR1,直接参与了DNA双链断裂修复过程。它们主要通过调控DNA损伤检查点激活、断裂末端剪切及组蛋白H2AZ-H2B/H2A-H2B置换等重要步骤发挥功能。现以酿酒酵母中的研究为重点,综述主要ATP依赖型染色质重塑复合物在DNA双链断裂修复中的功能及作用机制。  相似文献   

18.
(cAMP,ATP)区域化与基因转录调控模型孙兆贵(山东中医学院肿瘤技术省重点实验室42信箱,济南250014)李震(山东中医学院生化教研室)关于基因差异性表达机制的模型,以及有关研究报道很多,艾伯茨等(1990)[2],麦克莱恩等(1987)[5]...  相似文献   

19.
分离纯化了一批我国快生型大豆根癌蘸。测定了它们的固氮酶稀性和寄主专一性,发现相同菌株在不同大豆豆种植株上的结瘤和固氮活性差异甚大。蓑国USDA 191和193似寄主专一性较高,在我们所使用的豆种上结瘤能力很低,固氮活性也不高。对根瘤菌中巨型质粒的数量分布进行了分离分析,表明所有快生型大豆根瘤菌都包含1—3个巨型质粒(分子量范围;30-25Md>。用含有固氮酶结构基因的质粒pSA30作为探针对巨型质粒进行杂交,结果表明即使是快生型大豆根瘤菌,固氮酶结构基因也并不一定定位于巨型质粒上。另外,在若干菌株中发现psA30与二个巨型质粒同时杂交,表明有可能nif HDK或其部分基因的拷贝是分散的。  相似文献   

20.
综述了近年来有机介质中脂肪酶催化反应在酯合成、酯交换、内酯合成、多肽合成、高聚物合成及立体异构体拆分等有机合成领域的应用。对脂肪酶催化不对称反应合成光学纯化合物进行了较详细的介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号