首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrinsic viscosities of cyclic and linear lamda DNA   总被引:3,自引:0,他引:3  
The ratio of the intrinsic viscosities of the linear and circular forms of λ DNA, [η]L /[η]c, has been measured as a function of ionic strength in the range [Na+] = 0.6. M–0.03MCorrections were made for the presence of uncyclizable linear contaminant in circular preparations. By combining data in the literature on the ionic strength dependence of linear DNA of various molecular weights with that obtained here, it was possible to determine the expansion parameter εL as a function of [Na+]. εL is defined by the relation 〈L2〉 = b2N1+εL, where 〈L1〉 is the mean-square end-to-end distance of a chain of N segments of length b. The empirical relation εL = 0.05 ? 0.11 log [Na+] for native NaDNA at 25°C is found. When εL = 0, [η]L /[η]c extrapolates to 1.6, in good agreement with the theoretical prediction of 1.55. As εL increases, [η]L /[η]c increases, in agreement with a theory of Bloomfield and Zimm.  相似文献   

2.
Abstract: The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 ± 0.15 and 21.5 ± 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-d -Trp-d -Asp-Pro-d -Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K+-ATPase) and bumetanide (inhibitor of Na+-K+-Cl? cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport. ET-1-but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport activity that is not mediated by PKC.  相似文献   

3.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   

4.
R D Blake  P V Haydock 《Biopolymers》1979,18(12):3089-3109
A series of high-resolution melting curves were obtained by the continuous direct-derivative method [Blake, R. D. & Lefoley, S. G. (1978) Biochim. Biophys. Acta 518 , 233–246] on lambda DNA (cI857S7 strain) under varying conditions of [Na+]. Examination of the denaturation patterns at close intervals of [Na+] indicates that frequent changes in mechanism occur below 0.04M Na+, while almost none occurs above 0.1M Na+. Changes at low [Na+] generally occur in an abrupt fashion, in most cases within a 3 mM change in [Na+], and in at least one case within 0.6 mM, indicating the balance between alternative mechanisms is frequently quite delicate. These changes involve segments of between 900 and 1500 or more base pairs in length and are therefore not insignificant. Changes at low [Na+] reflect a perturbation of the energetic balance between competing mechanisms by weakly screened long-range electrostatic forces. Some perturbation probably also arises from variations in the linear charge density of the double helix induced by the proximity of premelted loop segments; however, this contribution cannot be evaluated without a detailed denaturation map. At high [Na+] the mechanism of melting is more conserved, permitting the dependence of subtrasitional melting temperature tm(i) on [Na+] to be examined for almost all 34 ± 2 subtransitions. The G + C composition of segments responsible for each subtransition was determined by a quantitative spectral method. Analysis according to the Manning-Record expression [Manning, G. (1972) Biopolymers 11 , 937–949; Record, M. T., Jr., Anderson, C. F. & Lohman, T. M. (1978) Q. Rev. Biophysics 11 , 103–178] relating ΔHm and dtm(i)/d log[Na+] to the fraction of Na+ released during melting, appears to indicate almost 40% more Na+ is bound to the single-stranded G and/or C residues than to A and T residues. This is consistent with a much shorter mean axial spacing and higher charge density in the former, particularly single-stranded G residues, which have an extraordinary tendency to stack.  相似文献   

5.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

6.
The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Na i ]), the internal pH (pH i ), the internal Ca2+ concentration ([Ca i ]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFIAM), 2′,7′-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM), fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 μM) elevates [Na i ] from 20 to 50 mM, increases thepH i , 0.16 pH units, elevates four fold the [Ca i ] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Na i ]), the same concentration (0.5 μM) of nigericin causes the opposite effect on thepH i (acidifies the synaptosomal interior), does not modify the [Na i ] and is practically unable to elevate the [Ca i ] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 μM the ionophore is able to elevate the [Ca i ] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.  相似文献   

7.
Workshop 7: 2     
Glutamine, the preferred precursor for neurotransmitter glutamate, is likely to be the principal substrate for the neuronal System A transporter SAT1 in vivo. By measuring currents associated with SAT1 expression in Xenopus oocytes, we found that SAT1 mediates transport of small, neutral, aliphatic amino acids including glutamine, alanine and the System A‐specific analogue 2‐(methylamino) isobutyrate, each with K0.5 of 0.3–0.5 mm . Amino acid transport is driven by the Na+ electrochemical gradient. Kinetic data indicates that Na+/cotransport comprises the ordered binding first of Na+ (a voltage‐dependent step), then alanine, then simultaneous translocation. Li+ (but not H+) can substitute for Na+ but results in reduced Vmax. In the absence of amino acid, SAT1 mediates a cation leak with selectivity Na+, Li+, H+, K+. The temperature‐dependence of the leak current (Ea = 17 ± 3 kcal/mol) is consistent with carrier‐mediated Na+ uniport activity (cf 13 ± 2 kcal/mol for Na+/alanine cotransport) but the leak does not saturate at physiological [Na+], suggesting channel activity. Despite a Na+ Hill coefficient of 1, we obtained Na+/amino acid coupling coefficients greater than 1 from simultaneous measurement of charge and [3H]alanine or [3H]glutamine uptake. Interpretation of these data is model‐dependent and consistent with either (1) an all‐carrier model in which Na+/amino acid cotransport is thermodynamically coupled 2 : 1, cotransport is preferred over Na+ uniport, and in which there is little cooperativity between Na+ binding events, or (2) 1 : 1 coupling in parallel with an always‐on Na+ channel activity. In either scenario, the presence of SAT1 at the plasma membrane and resultant Na+ fluxes will place a significant energy burden on the cell.  相似文献   

8.
Abstract: The effect of oxidative stress induced by the oxidant pair ascorbate/Fe2+ on the activity of ionotropic glutamate receptors was studied in cultured chick retina cells. The release of [3H]GABA and the increase of the intracellular free Na+ concentration ([Na+]i), evoked by glutamate receptor agonists, were used as functional assays for the activity of the receptors. The results show that the maximal release of [3H]GABA evoked by kainate (KA; ~20% of the total) or AMPA (~11% of the total) was not different in control and peroxidized cells, whereas the EC50 values determined for peroxidized cells (33.6 ± 1.7 and 8.0 ± 2.0 µM for KA and AMPA, respectively) were significantly lower than those determined under control conditions (54.1 ± 6.6 and 13.0 ± 2.2 µM for KA and AMPA, respectively). The maximal release of [3H]GABA evoked by NMDA under K+ depolarization was significantly higher in peroxidized cells (7.5 ± 0.5% of the total) as compared with control cells (4.0 ± 0.2% of the total), and the effect of oxidative stress was significantly reduced by a phospholipase A2 inhibitor or by fatty acid-free bovine serum albumin. The change in the intracellular [Na+]i evoked by saturating concentrations of NMDA under depolarizing conditions was significantly higher in peroxidized cells (8.9 ± 0.6 mM) than in control cells (5.9 ± 1.0 mM). KA, used at a subsaturating concentration (35 µM), evoked significantly greater increases of the [Na+]i in peroxidized cells (11.8 ± 1.7 mM) than in control cells (7.1 ± 0.8 mM). A saturating concentration (150 µM) of this agonist triggered similar increases of the [Na+]i in control and peroxidized cells. Accordingly, the maximal number of binding sites for (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) was increased after peroxidation, whereas the maximal number of binding sites for [3H]KA was not affected by oxidative stress. These data suggest that under oxidative stress the activity of the ionotropic glutamate receptors is increased, with the NMDA receptor being the most affected by peroxidation.  相似文献   

9.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

10.
Abstract: The present study examines the interaction of Na+ and K+ with the binding of the cocaine analogue 3β-(4-[125I]iodophenyl)tropane-2β-carboxylic acid isopropyl ester to dopamine transporters (DATs) in rat striatal synaptosomal membranes at 37°C. The binding increases with [Na+] from 10 to 100 mM and decreases with higher [Na+]. The presence of K+ reduces the maximal stimulatory effect of Na+ and causes a nonlinear EC50 shift for Na+. K+ strongly inhibits the binding at low [Na+]. Increasing [Na+] produces a linear IC50 shift for K+. Saturation analysis indicates a single binding site changing its affinity for the radioligand depending on [K+]/[Na+] ratio in the assay buffer. A reduced Bmax was observed in the presence of 10 mM Na+ and 30 mM K+. Both high [Na+] and high [K+] accelerate the dissociation of the binding, and K+-induced acceleration was abolished by increasing [Na+]. Least squares model fitting of equilibrium data and kinetic analysis of dissociation rates reveal competitive interactions between Na+ and K+ at two sites allosterically linked on the DAT: One site mediates the stimulatory effect of Na+, and the other site involves the radioligand binding and the inhibitory effect of cations on the binding. Various uptake blockers and substrates, dopamine in particular, display reduced potency in inhibiting the binding at a higher [K+]/[Na+] ratio.  相似文献   

11.
The effects of external pH (pH out) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pH out6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 M) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na i ] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca i ] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pH out 6. On the contrary, the external alkalinization (pH out 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pH out was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pH out changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pH out variations on [3H]GABA release were independent on the presence of HCO-3. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.  相似文献   

12.
K Okita  A Teramoto  H Fujita 《Biopolymers》1970,9(6):717-738
A new procedure for evaluating u and σ characterizing σ-helix-forming polypeptides in solution was derived from Nagai's theory for the helix–coil transition of such polymers. Here u is the activity for helix formation from random coil, and σ is the helix initiation parameter. The necessary data are the helical content fN at fixed solvent and temperature as a function of N, where N is the degree of polymerization of the polypeptide sample. Such data were obtained from ORD measurements on a number of fractionated samples of poly-N5-(3-hydroxypropyl)-L -glutamine (PHPG) in mixtures of water and methanol covering the complete range of composition and at various termperatures (5–40°C). When analyzed in terms of the proposed procedure, they yielded values of σ which were in the range (3.2 ± 0.6) × 10?4, substantially independent of solvent composition and temperature. These values were much larger than those obtained recently for σ of poly(β-benzyl-L -aspartate) in m-cresol and in a mixture of chloroform and DCA. The data for [η] and s0 (limiting sedimentation coefficient) as functions of molecular weight indicated that the molecular shape of PHPG in pure methanol is essentially rodlike, whereas that in pure water is not entirely randomly coiled but rather may be regarded as an interrupted helix. These indications were consistent with the results from ORD measurements. When plotted against the corresponding values of fN, the values of [η] and [s0] for PHPG in mixtures of water and methanol of various compositions and temperatures formed smooth composite curves, and we attributed these phenomena to the fact that σ of PHPG was nearly constant under these solvent conditions. Here [s0] stands for a reduced limiting sedimentation coefficient which is equal to the inverse friction factor of the solute molecule.  相似文献   

13.
Abstract— A polypeptide toxin purified 80-fold from the venom of the scorpion Leiurus quinquestriatus enhances activation of the action potential Na+ ionophore by the alkaloid neurotoxins veratridine, batrachotoxin and aconitine in electrically excitable neuroblastoma cells. The purified toxin can be labelled with [125I] by reaction with N-succinimidyl 3-(4-hydroxy 3-[125I] iodophenyl) propionate. The [125I] labelled toxin obtained from carboxymethyl Sephadex ion exchange chromatography appears homogeneous by gel electrophoresis and isoelectric focusing. The [125I] labelled toxin binds to a single class of saturable binding sites and also activates the action potential Na+ ionophore in electrically excitable neuroblastoma cells showing identical concentration dependence for both the binding and the activation effects. The labelled toxin does not show any saturable binding or activation of the action potential Na+ ionophore in variant neuroblastoma clones that specifically lack the action potential Na+ ionophore. The results indicate that scorpion toxin binds specifically to the action potential Na+ ionophore. The binding sites have a mean equilibrium dissociation constant of 3 IIH, a mean binding capacity of 46fmol toxin per mg cell protein and a mean density of 24 sites per μm2 of cell surface membrane. A single action potential Na+ ionophore transports 1 × 108 ions per min and has a conductance of 3 psiemens at physiologic ion concentrations. Depolarization of cells by elevated K+ concentration inhibits the saturable binding. Depolarization of cells by incubation in high Na+ medium (130mm -Na+, 5mm -K+) with gramicidin A or batrachotoxin also inhibits the saturable toxin binding. These results suggest that scorpion toxin binds specifically to a regulatory component (gate) of the Na+ ionophore. whose conformation is dependent on membrane potential.  相似文献   

14.
Abstract: The effects of γ-aminobutyric acid (GABA) on the spontaneous release of endogenous glutamic acid (Glu) or aspartic acid (Asp) and the effects of Glu on the release of endogenous GABA or [3H]GABA were studied in superfused rat cerebral cortex synaptosomes. GABA increased the outflow of Glu (EC5017.2 μM) and Asp (EC50 18.4 μM). GABA was not antagonized by bicuculline or picrotoxin. Neither muscimol nor (-)-baclofen mimicked GABA. The effects of GABA were prevented by GABA uptake inhibitors and were Na+ dependent. Glu enhanced the release of [3H]GABA (EC50 11.5 μM) from cortical synaptosomes. Glu was not mimicked by the glutamate receptor agonists N-methyl-d -aspartic, kainic, or quisqualic acid. The Glu effect was decreased by the Glu uptake inhibitor D-threo-hydroxyaspartic acid (THA) and it was Na+ sensitive. Similarly to Glu, D-Asp increased [3H]GABA release (EC50 9.9 μM), an effect blocked by THA. Glu also increased the release of endogenous GABA from cortex synaptosomes. In this case the effect was in part blocked by the (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 6-cyano-7-nitroquinoxaiine-2, 3-dione, whereas the 6-cyano-7-nitroquinoxaline- 2, 3-dione-insensitive portion of the effect was prevented by THA. GABA increased the [3H]D-Asp outflow (EC50 13.7 μM) from hippocampal synaptosomes in a muscimol-, (-)- baclofen-, bicuculline-, and picrotoxin-insensitive manner. The GABA effect was abolished by blocking GABA uptake and was Na+ dependent. Glu increased the release of [3H]- GABA from hippocampal synaptosomes (EC50 7.1 μM) in an N-methyl-d -aspartic acid-, kainic acid-, or quisqualic acid-insensitive way. The effect of Glu was prevented by THA and was Na+ dependent. As in the cortex, the effect of Glu was mimicked by D-Asp in a THA-sensitive manner. It is proposed that high-affinity GABA or Glu heterocarriers are sited respectively on glutamatergic or GA- BAergic nerve terminals in rat cerebral cortex and hippocampus. The uptake of GABA may modulate Glu and Asp release, whereas the uptake of Glu may modulate the release of GABA. The existence of these heterocarriers is in keeping with the reported colocalization of GABA and Glu in some cortical and hippocampal neurons. Preliminary data suggest that these mechanisms may also be present in rat cerebellum and spinal cord.  相似文献   

15.
Summary Intracellular concentrations of elements were measured in the retina of the honeybee drone,Apis mellifera by electron microprobe X-ray analysis of frozen dried sections (Table 2). Before shock-freezing, slices of retina were superfused with Ringer solution, as in other work in which intracellular activities of Na+, K+ and Cl were measured with ion-selective microelectrodes. The results give no evidence for any binding or sequestering of these elements in the cells, with the possible exception of K in photoreceptors (Table 3). In the special case of Na in outer pigment cells,a Na and [Na] were measured in the same piece of tissue: Na was present at a high concentration (55 mmol/l) but, again, we calculate that it was all freely dissolved in the cell water.It was estimated that the subrhabdomeric cisternae of the photoreceptors contained 2–3 mmol/l Ca; otherwise, their electrolyte composition was similar to that of the cytoplasm. [Na], [K] and [Cl] in the rhabdom were what would be expected if the spaces between the microvilli were filled with Ringer solution  相似文献   

16.
Abstract: Treatment of cultured bovine adrenal chromaffin cells with 100 nM insulin raised [3H]saxitoxin ([3H]STX) binding in a time-dependent manner (t1/2 = 26 h). Insulin (100 nM for 4 days) increased the Bmax of [3H]STX binding by 49% without changing the KD value and also augmented the maximal influx of 22Na+ due to 560 µM veratridine by 39% without altering the EC50 value of veratridine. The stimulatory effect of insulin on 22Na+ influx was concentration-dependent with an EC50 of 3 nM, whereas insulin-like growth factor (IGF)-I had little effect at 1 nM. Ptychodiscus brevis toxin-3 allosterically potentiated veratridine (100 µM)-induced 22Na+ influx by approximately twofold in both insulin-treated cells and untreated cells. Veratridine-induced 45Ca2+ influx via voltage-dependent Ca2+ channels and catecholamine secretion were also enhanced by insulin treatment, whereas insulin did not alter nicotine-induced 22Na+ influx via the nicotinic receptor-ion channel complex and high-K+ (direct activation of voltage-dependent Ca2+ channels)-induced 45Ca2+ influx. Stimulatory effects of insulin on [3H]STX binding and veratridine-induced 22Na+ influx were nullified by simultaneous treatment with either 5,6-dichlorobenzimidazole riboside, an inhibitor of RNA synthesis, or cycloheximide, an inhibitor of protein synthesis, whereas insulin treatment did not appreciably increase the level of mRNA encoding the Na+ channel α-subunit. These results suggest that the binding of insulin to insulin (but not IGF-I) receptors mediates the up-regulation of functional Na+ channel expression at plasma membranes; this up-regulation may be due, at least in part, to the de novo synthesis of an as yet unidentified protein(s).  相似文献   

17.
The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.  相似文献   

18.
Complexation of M+=Li+, Na+, Ag+ and TI+ by the cryptands 4, 7, 13, 18-tetraoxa-l, 10-diazabicyclo[8.5.5]eicosane (C211) and 4,7,13-trioxa-1,10-diazabicyclo[8.5.5]eicosane (C21C5) to form the cryptates [M.C211]+ and [M.C21C5]+ has been studied in trimethyl phosphate by potentiometric titration and 7Li and 23Na NMR spectroscopy. For [M.C211]+ the logarithm of the apparent stability constants, log K (dm3 mol-1)=6.98±0.05, 5.38±0.05, 9.82±0.02 and 3.95±0.02 for M+ =Li+, Na+, Ag+ and TI+, respectively; and for [M.C21C5]+ log K (dm3 mol-1)=2.40±0.10, 1.90±0.05, 6.04±0.02 and 2.42±0.10 for M+=Li+, Na+, Ag+ and Tl+, respectively. The decomplexation kinetic parameters for [Na.C211]+ are: kd (298.2 K)=6.924±0.50 s-l, ΔHd≠=62.2±0.9 kJ mol-1, and ΔSd≠= -20.3±2.7 J K-1 mol-1; and those for [Li.C21C5]+ are: kd (298.2 K)=23.3±0.4 s-1, ΔHd≠ =61.2±1.1 kJ mol-1, and ΔSd≠= -13.6±3.6 J K-1 mol-1. Metal ion exchange on [Li.C211]+ is in the very slow extreme of the NMR timescale up to 390 K and kd « 4 s-1 at 298.2 K, while in contrast exchange on [Na.C21C5]+ is in the fast extreme of the NMR timescale at 298.2 K (kd≈ 104 s-1). These data are compared with those obtained in other solvents.  相似文献   

19.
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets.  相似文献   

20.
The Na+/K+-ATPase exports 3Na+ and imports 2K+ at the expense of the hydrolysis of 1 ATP. In the absence of K+, it carries on electroneutral, Na+-dependent transient charge movement (also known as “electroneutral Na+/Na+ exchange mode”) and produces a transient current containing faster and slower components in response to a sudden voltage step. Components with different speeds represent sequential release of Na+ ions from three binding sites. The effect of holding potential on slow charge movement was studied in the presence of different concentrations of ADPi, Nai+ and Nao+ with the intention of improving our understanding of Nai+ binding. However, the manipulation of [ADP]i and [Na+]i did not cause as pronounced changes as predicted in the magnitude of charge movement (Q tot), which indicated that our experimental conditions were not able to backwardly drive reaction across the energy barrier to Nai+ release/rebinding steps. On the contrary, lowering [Na+]o caused evident dependence of Q tot on holding potential, with characteristics suggesting that pumps were escaping from E2P through the uncoupled Na+ efflux activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号