首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey was compiled of several characteristics of the intersubunit contacts in 58 oligomeric proteins, and of the intermolecular contacts in the lattice for 223 protein crystal structures. The total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contact patches are frequently smaller than patches involved in oligomer interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acids at oligomer interfaces. Arginine is the only amino acid prominent in both types of interfaces. Potentials of mean force for residue–residue contacts at both crystal and oligomer interfaces were derived from comparison of the number of observed residue–residue interactions with the number expected by mass action. They show that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. They also suggest that complex salt bridges with certain amino acid compositions might be important in oligomer formation. For a protein that is recalcitrant to crystallization, substitution of lysine residues with arginine or glutamine is a recommended strategy. Proteins 28:494–514, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Variations in the concentration of free amino acids in the muscle and plasma of trout submitted to 5 minutes of intense exercise have been studied. The responses of untrained fish and those trained performing the same type of exercise twice daily for 28 days are compared. Total amino acid concentrations in muscle tend to diminish after intense exercise. Significant decreases are observed in muscle content of alanine, beta-alanine, isoleucine and ornithine. Plasma amino acids tend to increase after exercise with significant differences in glutamate, GABA, methionine and NH4+. The small variations due to intense exercise suggest that the amino acids are mobilised. Training led to a decrease in total amino acid concentration in plasma but not in muscle, where levels of aspartate and ornithine increased. This suggests a metabolic adaptation to exercise, with amino acid level retention in the muscle.  相似文献   

3.
Phipps KR  Li H 《Proteins》2007,67(1):121-127
The crystal packing surfaces comprising protein-RNA interactions were analyzed for 50 RNA-protein crystal structures in the Protein Data Bank database. Protein-RNA crystal contacts, which represent nonspecific protein-RNA interfaces, were investigated for their amino acid propensities, hydrogen bond patterns, and backbone and side chain interactions. When compared to biologically relevant interactions, the protein-RNA crystal contacts exhibit similarities as well as differences with respect to the principles of protein-RNA interactions. Similar to what was observed at cognate protein-RNA interfaces, positively charged amino acids have high propensities at noncognate protein-RNA interfaces and preferentially form hydrogen bonds with RNA phosphate groups. In contrast, nonpolar residues are less frequently associated with noncognate interactions. These results highlight the important roles of both electrostatic and hydrogen bonding interactions, facilitated by positively charged amino acids, in mediating both specific and nonspecific protein-RNA interactions.  相似文献   

4.
We demonstrate in this contribution the evidence that significant cooperative binding effect can be identified for the amino acid sites that are determinant to the binding characteristics in peptide–peptide interactions. The analysis of tryptophan‐scanning mutagenesis of the 14‐mer peptide consisting only of glycine provides a mapping of position‐dependent contributions to the binding energy. The pronounced tryptophan‐associated peptide–peptide interactions are originated from the indole moieties with the main chains of 14‐mer glycines containing N–H and C?O moieties. Specifically, with the presence of two tryptophans as determinant amino acids, cooperative binding can be observed, which are dependent on relative positions of the two tryptophans with a “volcano”‐like characteristics. An optimal separation of 6–10 amino acids between two adjacent binding sites can be identified to achieve maximal binding interactions.  相似文献   

5.
The interactions of Met and Cys with other amino acid side chains have received little attention, in contrast to aromatic–aromatic, aromatic–aliphatic or/and aliphatic–aliphatic interactions. Precisely, these are the only amino acids that contain a sulfur atom, which is highly polarizable and, thus, likely to participate in strong Van der Waals interactions. Analysis of the interactions present in membrane protein crystal structures, together with the characterization of their strength in small‐molecule model systems at the ab‐initio level, predicts that Met–Met interactions are stronger than Met–Cys ≈ Met–Phe ≈ Cys–Phe interactions, stronger than Phe–Phe ≈ Phe–Leu interactions, stronger than the Met–Leu interaction, and stronger than Leu–Leu ≈ Cys–Leu interactions. These results show that sulfur‐containing amino acids form stronger interactions than aromatic or aliphatic amino acids. Thus, these amino acids may provide additional driving forces for maintaining the 3D structure of membrane proteins and may provide functional specificity.  相似文献   

6.
Transaminases catalyze amino transfer reactions from amino donors such as amino acids or amines to keto acids or ketones to give chiral amino acid or amines in optically pure form. α-Amino acid dehydrogenases catalyze the asymmetric reductive amination of α-keto acids using ammonia as amino donor to furnish L -amino acids. The distinct features and synthetic application of these two enzymes are reviewed in an effort to illustrate their promising and challenging aspects in serving as approaches to the direct asymmetric synthesis of optically pure amines from the corresponding keto compounds, a formidable problem in organic chemistry.  相似文献   

7.
Ellis JJ  Broom M  Jones S 《Proteins》2007,66(4):903-911
A data set of 89 protein-RNA complexes has been extracted from the Protein Data Bank, and the nucleic acid recognition sites characterized through direct contacts, accessible surface area, and secondary structure motifs. The differences between RNA recognition sites that bind to RNAs in functional classes has also been analyzed. Analysis of the complete data set revealed that van der Waals interactions are more numerous than hydrogen bonds and the contacts made to the nucleic acid backbone occur more frequently than specific contacts to nucleotide bases. Of the base-specific contacts that were observed, contacts to guanine and adenine occurred most frequently. The most favored amino acid-nucleotide pairings observed were lysine-phosphate, tyrosine-uracil, arginine-phosphate, phenylalanine-adenine and tryptophan-guanine. The amino acid propensities showed that positively charged and polar residues were favored as expected, but also so were tryptophan and glycine. The propensities calculated for the functional classes showed trends similar to those observed for the complete data set. However, the analysis of hydrogen bond and van der Waal contacts showed that in general proteins complexed with messenger RNA, transfer RNA and viral RNA have more base specific contacts and less backbone contacts than expected, while proteins complexed with ribosomal RNA have less base-specific contacts than the expected. Hence, whilst the types of amino acids involved in the interfaces are similar, the distribution of specific contacts is dependent upon the functional class of the RNA bound.  相似文献   

8.
Gao X  Stumpe M  Feussner I  Kolomiets M 《Planta》2008,227(2):491-503
Lipoxygenases (LOXs) are members of a large enzyme family that catalyze oxygenation of free polyunsaturated fatty acids into diverse hydroperoxide compounds, collectively called oxylipins. Although LOXs have been well studied in dicot species, reports of the genes encoding these enzymes are scarce for monocots, especially maize. Herein, we reported the cloning, characterization and molecular functional analysis of a novel maize LOX gene, ZmLOX6. The ZmLOX6 nucleotide sequence encodes a deduced translation product of 892 amino acids. Phylogenetic analysis showed that ZmLOX6 is distantly related to previously reported 9- or 13-LOXs from maize and other plant species, including rice and Arabidopsis. Although sequence prediction suggested cytoplasmic localization of this protein, ZmLOX6 protein has been reportedly isolated from mesophyll cell chloroplasts, emphasizing the unique features of this protein. Plastidial localization was confirmed by chloroplast uptake experiments with the in vitro translated protein. Analysis of recombinant protein revealed that ZmLOX6 has lost fatty acid hydroperoxide forming activity but 13-LOX-derived fatty acid hydroperoxides were cleaved into odd-chain ω-oxo fatty acids and as yet not identified C5-compound. In line with its reported abundance in mesophyll cells, ZmLOX6 was predominantly expressed in leaf tissue. Northern blot analysis demonstrated that ZmLOX6 was induced by jasmonic acid, but repressed by abscisic acid, salicylic acid and ethylene and was not responsive to wounding or insects. Further, this gene was strongly induced by the fungal pathogen Cochliobolus carbonum during compatible interactions, suggesting that ZmLOX6 may contribute to susceptibility to this pathogen. The potential involvement of ZmLOX6 in maize interactions with pathogens is discussed.  相似文献   

9.
We describe fibre diffraction studies on the interaction of DNA with different amino acids and peptides. The B form of DNA, with ten base-pairs per turn, is always found at high levels of humidity. We suggest that this pitch is observed because the DNA molecules are maintained in a straight position. In solution, the DNA molecules are bent and may have a larger pitch. The A form of DNA is never found upon dehydration. Instead, the B form may be either stabilized by the counterions or altered so that the number of base-pairs per helical turn decreases upon dehydration. Alteration is favoured either by small counterions that have a single charge or by large basic polypeptides and proteins. Stabilization is favoured by small counterions that have several charged groups. A third type of behaviour is found with some amino acids that contain hydrophobic groups, which destabilize the secondary structure of DNA, probably due to a modification of its intramolecular interactions. We have not detected any specific effect of amino acid side-chains, although the amino acid sequence has a clear influence on the interaction. We think that these observations are of interest in the pursuit of more detailed crystallographic studies on protein-DNA interactions.  相似文献   

10.
Formation of peptide bonds was attempted bythermal activation of dry amino acids from aqueous solutionthat simulated prebiotic evaporative environments. Theevaporation trend of amino acids solutions shows abifurcation and can lead to either a crystalline phase(near equilibrium) or a metastable non-crystalline phase(far from equilibrium). Only amino acids in this metastablephase are able to form peptide bonds by thermal activationat temperatures that are generated by solar radiationtoday. We suggest that this metastable phase is the idealinitial material to trigger amino acid assemblage withprotein-like structure because provide the driving force(supersaturation) for an intense interaction betweenmonomers of different amino acids and allows activation ofthese monomers in plausible prebiotic conditions.  相似文献   

11.
12.
A moleclar imprinting technique based on electrostatic and hydrogen bonding interactions was used to prepare polymers of high selectvity for the original print molecule (D or L form of an amino acid derivative). In the chromatographic mode ig enantioselectivity was observed, in particular for amino acid amides and basic amino acid esters. As indicated y he broad peaks obtained, the mass transfer, including the kinetics of the binding and dissociation process, was slow and appeared to be slower in systems where a higher number of interactions between the solute and the stationary phase could be expected. In such systems enhanced selectivity was observed. For polymers prepared at a lower temperature the mass transfer was more rapid and a higher selectivity was observed, wich allowed the separations to be performed at room temperature. A more rapid mass transfer and a higher selectivity could also be achieved by increasing the column temperature. Furthermore the polymers showed a high sample load capacity and a high stability, and the can easily be prepared.  相似文献   

13.
Alpha-chymotrypsin-catalyzed acyl transfer from Boc-L-MetONp, Ac-L-TyrOEt, Bz-L-TyrOMe, Mal-L-PheOMe to the C-protected amino acids (L-AlaNH2, L-LeuNH2, L-ArgOMe and beta-naphthylamides of L-Arg, L-Leu, L-Ala and L-Glu) has been studied. Modification of the carboxylic groups with beta-naphthylamide was shown to increase the reactivity of nucleophiles in these reactions by a factor of more than 100 in comparison with amides and esters of the same amino acids. This effect can be accounted for by the effective formation of the nucleophile-acylenzyme complex due to hydrophobic interactions of the beta-naphthylamide moiety with the corresponding subsite of alpha-chymotrypsin. The reaction kinetics follows the scheme involving hydrolysis of the nucleophile-acylenzyme intermediate. The contribution of this pathway depends on the structures of both the acyl-group donor and the added nucleophile. The competitive inhibition by amino acid beta-naphthylamides is also observed. The results obtained show that modification of the COOH-group of added nucleophiles by beta-naphthylamide strongly affects the reactivity of these compounds in the alpha-chymotrypsin-catalyzed peptide synthesis.  相似文献   

14.
Two species of folate binding protein (FBP), an integral membrane-associated form and a soluble secreted form, have been previously purified from cultured human KB cells. The complete nucleotide sequence of the complementary DNA (cDNA) clone for the coding region of the mature membrane-associated FBP has now been determined, and the deduced amino acid sequence has been computer-analyzed for a prediction of the secondary structure of the protein. The clone has 857 nucleotides of which 678 comprise the coding region for 226 amino acids. The deduced amino sequence contains the identical sequence of the published 18 NH2-terminal amino acids of the purified FBP from KB cells and the published partial amino acid sequence of the human milk FBP except for 1 residue. There was also over 90% homology with the published amino acid sequence of the bovine milk FBP. A total of 16 cysteine residues has been conserved in the three proteins indicating that this amino acid may provide a tertiary structure which is required for its ligand binding function. Northern blot analysis using the cDNA probe identified a single band of 1.28-kilobase pair mRNA in KB cells which was 4.7-fold more intense in folate-depleted cells than in normal cells. These results indicate that the membrane FBP and the soluble FBP in the medium are translation products of the same gene. Computer analysis of the deduced amino acid sequence indicates that there is only one stretch of amino acids of sufficient hydrophobicity and length to span the lipid bilayer of the plasma membrane, but it lacked a predictable helical structure. Those regions of the sequence which did have a predictable helical structure lacked sufficient hydrophobicity required for a membrane anchor. Thus, it is likely that the fatty acids previously reported to be present in the membrane-associated FBP from these cells rather than a peptide sequence provide an important membrane anchoring function.  相似文献   

15.
Aphidius ervi Haliday (Hymenoptera, Braconidae) is an endophagous parasitoid of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera, Aphididae). This parasitoid strongly redirects host reproduction and metabolism to favour nutrition and development of its juvenile stages. Parasite-regulated biosynthesis and mobilization of nitrogen metabolites determine a significant increase of host nutritional suitability. The aim of the present study was mainly to investigate the temporal changes of A. pisum amino acid pools, as affected by A. ervi parasitism, and to assess the role of the aphid bacterial endosymbiont Buchnera in determining the observed changes. In parasitized aphids, we observed a very significant increase in total free amino acids, compared with synchronous non-parasitized controls, starting from day 4 after parasitization (+51%). This trend culminated with more than doubling the control value (+152%) on day 6 after parasitization. However, a significant “parasitism” effect was observed only for 10 of the 28 amino acids detected. Tyrosine accumulation was the most prominent parasitoid-induced alteration, with a fourfold increase over control levels registered on day 6. In parasitized hosts, the amino acid biosynthetic capacity of Buchnera was unaltered, or even enhanced for the phenolic pool, and contributed greatly to the definition and maintainance of host free amino acid pools. The hypertyrosinemic syndrome was not dependent on food supply of the aromatic nucleus but was induced by parasitism, which likely enhanced the aromatic shuttle mediating phenylalanine transfer from bacteria to the host tissues, where tyrosine conversion occurs. This process is likely associated with a selective disruption of the host’s functions requiring tyrosine, leading to the remarkable accumulation of this amino acid. The possible mechanisms determining these parasitism-induced host alterations, and their nutritional significance for the developing parasitoid larva, are discussed.  相似文献   

16.
Stable peptides have been explored as epitope mimics for protein–protein and protein–nucleic acid interactions; however, presentation of a regular structure is critical. Aromatic interactions are ubiquitous and are competent at stabilizing a β‐hairpin fold. The greatest stabilization has been reported from pairs of tryptophan side chains. Naphthylalanine residues are often used as tryptophan replacements, but it is not clear if 1‐naphthylalanine or 2‐naphthylalanine is adequate at replicating the geometry and stability observed with tryptophan aromatic interactions. Herein, a 12‐residue peptide has been constructed with laterally disposed aromatic amino acids. A direct comparison is made between tryptophan and other bicyclic, unnatural amino acids. Significant stabilization is gained from all bicyclic amino acids; however, geometric analysis shows that only 1‐naphthylalanine adopts a similar edge to face geometry as tryptophan, whereas the 2‐naphthylalanine appears most similar to a substituted phenylalanine. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
A cDNA clone for a pathogenesis-related protein 1 from barley   总被引:1,自引:0,他引:1  
A barley cDNA clone (PRb-1) corresponding to an mRNA differentially induced in resistant compared to susceptible barley cultivars by powdery mildew infection was isolated and characterised. The deduced amino acid sequence revealed 24 amino acids comprising the signal peptide and 140 amino acids of the mature peptide (15 kDa). This showed close homology to PR-1-like proteins, which have been isolated from maize, tobacco, tomato and Arabidopsis thaliana. Northern blot analysis showed accumulation of the corresponding mRNA 12 h after inoculation of resistant barley cultivars with Erysiphe graminis. Increased expression of the PRb-1 gene was also observed in resistant compared with near-isogenic susceptible barley plants following treatment with ethylene, salicylic acid, methyl jasmonate and 2,6-dichloro-isonicotinic acid.  相似文献   

18.
Glycine conjugation of a series of benzoic acid derivatives was investigated in mouse kidney mitochondria. The chlorine and methyl substitutions in the para- and meta-positions of the benzene ring yielded an increase in glycine conjugation. The acids with a methoxy group showed a low degree of glycine conjugation. In addition, the acids with nitro or amino groups were conjugated to a slight extent with glycine. The in vitro conjugation of salicylic acid with glycine occurred not in liver but in kidney. The specificity of the renal medium chain acyl-CoA synthetase catalyzing the first reaction of glycine conjugation was also examined. The enzyme accepted not only medium chain fatty acids but also aromatic and arylacetic acids. The highest activity was shown with hexanoic acid. High activities were observed for benzoic acid derivatives with alkyl and alkoxyl groups in the para- and meta-positions of the benzene ring. An ortho-substituted acid exhibited no activity. In addition, the enzyme was less active with valproic acid, tranexamic acid, indomethacin and ketoprofen. The enzyme was inhibited by diflunisal, 2-hydroxydodecanoic acid and salicylic acid, which did not act as substrates. There was a poor correlation between the activity of the medium chain acyl-CoA synthetase and glycine conjugation of eleven substituted benzoic acids. These findings suggest that the present medium chain acyl-CoA synthetase is involved in glycine conjugation of the substituted acids in mouse kidney mitochondria, but there may be a larger contribution of another isoenzyme.  相似文献   

19.
《BBA》2022,1863(1):148504
The Orange Carotenoid Protein (OCP) is a soluble photoactive protein involved in cyanobacterial photoprotection. It is formed by the N-terminal domain (NTD) and C-terminal (CTD) domain, which establish interactions in the orange inactive form and share a ketocarotenoid molecule. Upon exposure to intense blue light, the carotenoid molecule migrates into the NTD and the domains undergo separation. The free NTD can then interact with the phycobilisome (PBS), the extramembrane cyanobacterial antenna, and induces thermal dissipation of excess absorbed excitation energy. The OCP and PBS amino acids involved in their interactions remain undetermined. To identify the OCP amino acids essential for this interaction, we constructed several OCP mutants (23) with modified amino acids located on different NTD surfaces. We demonstrated that only the NTD surface that establishes interactions with the CTD in orange OCP is involved in the binding of OCP to PBS. All amino acids surrounding the carotenoid β1 ring in the OCPR-NTD (L51, P56, G57, N104, I151, R155, N156) are important for binding OCP to PBS. Additionally, modification of the amino acids influences OCP photoactivation and/or recovery rates, indicating that they are also involved in the translocation of the carotenoid.  相似文献   

20.
Several amino acids have been synthesized as model transport substrates building on the piperidine and cyclohexane rings. Only when the distal N atom is part of an unambiguously cationic structure are these compounds transported predominantly by the cationic amino acid system. These amino acids in labeled form are excreted rather slowly in unmodified state, very little 14CO2 being released. Those which are unambiguously cationic (including also homoarginine) led to a greatly increased excretion of arginine, lysine, ornithine and citrulline. Those which might be expected to act as lysine analogs had little effect on the excretion of the basic amino acids, although the excretion of citrulline and the sum of glutamine plus asparagine was accelerated. Certain of the analogs intensified the excretion of citrulline in dissociation from effects on resorption of the basic amino acids, also in dissociation from effects on cystine resorption. These results indicate citrulline resorption does not occur principally by the same agency serving for the basic amino acids, nor by the agency serving for cystine, despite the observed interactions for resorption. The injection of either of three transport analogs for arginine into the rat leads to early increases in the circulating levels of immunologically reactive insulin and glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号