首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The β-globin gene cluster of Wistar rat was extensively cloned and the embryonic genes were mapped and sequenced. Four overlapping λ Dash recombinant clones cover about 31 kb and contain four nonadult β-globin genes, 5′–ε1–γ1–γ2–ψγ3–3′. The ε1 and γ2 are active genes, since their protein products were detected in the fetal stage of the rat (Iwahara et al., J Biochem 119:360–366, 1996). The γ1 locus might be a pseudogene, since the ATA box in the promoter region is mutated to GTA; however, no other defect is observed. The ψγ3 locus is a truncated pseudogene because a 19-base deletion, which causes a shift of the reading frame, is observed between the second nucleotide of the putative codon 68 and codon 76. A sequence comparison suggests that the ψγ3 might be produced by a gene conversion event of the proto-γ-globin gene set. Possible histories of the evolution of rat nonadult β-globin genes are discussed. Received: 6 August 1998 / Accepted: 12 February 1999  相似文献   

2.
3.
The sphere organelles (spheres) ofXenopus and other amphibian oocytes are known to contain small nuclear ribonucleoprotein particles (snRNPs) and have been suggested to play a role in snRNP complex assembly. Coupled with the similarities that exist between spheres and nucleoli and the quantitative and kinetic aspects of snRNA synthesis in theXenopus oocyte, we have investigated whether or not the U snRNA encoding genes are amplified inXenopus oogenesis, the spheres being possible sites for the location of such extrachromosomal gene copies. By applying a number of quantitative nucleic acid hybridization procedures to both total and fractionated oocyte and somatic DNA, employing both homologous and heterologous U snRNA gene probes and suitable amplification and non-amplification control probes, we show that the U snRNA genes do not undergo any major amplification inXenopus oogenesis. Therefore, the analogy between the sphere organelles and nucleoli appears to be limited. The role of the spheres and their relationship to other snRNP containing structures, specifically B snurposomes, and the sphere organizer loci remains obscure.by A. Spradling  相似文献   

4.
One of the few commonly believed principles of molecular evolution is that functionally more important genes (or DNA sequences) evolve more slowly than less important ones. This principle is widely used by molecular biologists in daily practice. However, recent genomic analysis of a diverse array of organisms found only weak, negative correlations between the evolutionary rate of a gene and its functional importance, typically measured under a single benign lab condition. A frequently suggested cause of the above finding is that gene importance determined in the lab differs from that in an organism's natural environment. Here, we test this hypothesis in yeast using gene importance values experimentally determined in 418 lab conditions or computationally predicted for 10,000 nutritional conditions. In no single condition or combination of conditions did we find a much stronger negative correlation, which is explainable by our subsequent finding that always-essential (enzyme) genes do not evolve significantly more slowly than sometimes-essential or always-nonessential ones. Furthermore, we verified that functional density, approximated by the fraction of amino acid sites within protein domains, is uncorrelated with gene importance. Thus, neither the lab-nature mismatch nor a potentially biased among-gene distribution of functional density explains the observed weakness of the correlation between gene importance and evolutionary rate. We conclude that the weakness is factual, rather than artifactual. In addition to being weakened by population genetic reasons, the correlation is likely to have been further weakened by the presence of multiple nontrivial rate determinants that are independent from gene importance. These findings notwithstanding, we show that the principle of slower evolution of more important genes does have some predictive power when genes with vastly different evolutionary rates are compared, explaining why the principle can be practically useful despite the weakness of the correlation.  相似文献   

5.
Comparative evolutionary analyses of gene families among divergent lineages can provide information on the order and timing of major gene duplication events and evolution of gene function. Here we investigate the evolutionary history of the α-globin gene family in mammals by isolating and characterizing α-like globin genes from an Australian marsupial, the tammar wallaby, Macropus eugenii. Sequence and phylogenetic analyses indicate that the tammar α-globin family consists of at least four genes including a single adult-expressed gene (α), two embryonic/neonatally expressed genes (ζ and ζ′), and θ-globin, each orthologous to the respective α-, ζ-, and θ-globin genes of eutherian mammals. The results suggest that the θ-globin lineage arose by duplication of an ancestral adult α-globin gene and had already evolved an unusual promoter region, atypical of all known α-globin gene promoters, prior to the divergence of the marsupial and eutherian lineages. Evolutionary analyses, using a maximum likelihood approach, indicate that θ-globin, has evolved under strong selective constraints in both marsupials and the lineage leading to human θ-globin, suggesting a long-term functional status. Overall, our results indicate that at least a four-gene cluster consisting of three α-like and one β-like globin genes linked in the order 5′–ζ–α–θ–ω–3′ existed in the common ancestor of marsupials and eutherians. However, results are inconclusive as to whether the two tammar ζ-globin genes arose by duplication prior to the radiation of the marsupial and eutherian lineages, with maintenance of exon sequences by gene conversion, or more recently within marsupials.Reviewing Editor: Dr. John Oakeshott  相似文献   

6.
Different models of gene family evolution have been proposed to explain the mechanism whereby gene copies created by gene duplications are maintained and diverge in function. Ohta proposed a model which predicts a burst of nonsynonymous substitutions following gene duplication and the preservation of duplicates through positive selection. An alternative model, the duplication–degeneration–complementation (DDC) model, does not explicitly require the action of positive Darwinian selection for the maintenance of duplicated gene copies, although purifying selection is assumed to continue to act on both copies. A potential outcome of the DDC model is heterogeneity in purifying selection among the gene copies, due to partitioning of subfunctions which complement each other. By using the dN/dS () rate ratio to measure selection pressure, we can distinguish between these two very different evolutionary scenarios. In this study we investigated these scenarios in the -globin family of genes, a textbook example of evolution by gene duplication. We assembled a comprehensive dataset of 72 vertebrate -globin sequences. The estimated phylogeny suggested multiple gene duplication and gene conversion events. By using different programs to detect recombination, we confirmed several cases of gene conversion and detected two new cases. We tested evolutionary scenarios derived from Ohtas model and the DDC model by examining selective pressures along lineages in a phylogeny of -globin genes in eutherian mammals. We did not find significant evidence for an increase in the ratio following major duplication events in this family. However, one exception to this pattern was the duplication of -globin in simian primates, after which a few sites were identified to be under positive selection. Overall, our results suggest that following gene duplications, paralogous copies of -globin genes evolved under a nonepisodic process of functional divergence.[Reviewing Editor: Martin Kreitman]  相似文献   

7.
8.
9.
Evolutionary and clinical neocentromeres: two faces of the same coin?   总被引:2,自引:1,他引:1  
It has been hypothesized that human clinical neocentromeres and evolutionary novel centromeres (ENC) represent two faces of the same phenomenon. However, there are only two reports of loci harboring both a novel centromere and a clinical neocentromere. We suggest that only the tip of the iceberg has been scratched because most neocentromerization events have a very low chance of being observed. In support of this view, we report here on a neocentromere at 9q33.1 that emerged in a ring chromosome of about 12 Mb. The ring was produced by a balanced rearrangement that was fortuitously discovered because of its malsegregation in the propositus. Chromatin-immunoprecipitation-on-chip experiments using anti-centromere protein (CENP)-A and anti-CENP-C antibodies strongly indicated that a novel centromeric domain was present in the ring, in a chromosomal domain where an ENC emerged in the ancestor to Old World monkeys.  相似文献   

10.
11.
Journal of the History of Biology - Historiographical accounts typically place the formulation of the first embryological theory of the evolutionary origin of vertebrates after the publication of...  相似文献   

12.
Although some α-glucosidases from the α-amylase family (glycoside hydrolase family GH13) have been studied extensively, their exact number, organization on the chromosome, and orthology/paralogy relationship were unknown. This was true even for important disease vectors where gut α-glucosidase is known to be receptor for the Bin toxin used to control the population of some mosquito species. In some cases orthologs from related species were studied intensively, while potentially important paralogs were omitted. We have, therefore, used a bioinformatics approach to identify all family GH13 α-glucosidases from the selected species from Metazoa (including three mosquito species: Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus) as well as from Fungi in an effort to characterize their arrangement on the chromosome and evolutionary relationships among orthologs and among paralogs. We also searched for pseudogenes and genes coding for enzymatically inactive proteins with a possible new function. We have found GH13 α-glucosidases mostly in Arthropoda and Fungi where they form gene families, as a result of multiple lineage-specific gene duplications. In mosquito species we have identified 14 α-glucosidase (Aglu) genes of which only five have been biochemically characterized so far, two are putative pseudogenes and the rest remains uncharacterized. We also revealed quite a complex evolutionary history of the eukaryotic α-glucosidases probably involving multiple losses of genes or horizontal gene transfer from bacteria.  相似文献   

13.
14.
U6 and U6atac snRNAs play analogous critical roles in the major U2-dependent and minor U12-dependent spliceosomes, respectively. Previous results have shown that most of the functional cores of these two snRNAs are either highly similar in sequence or functionally interchangeable. Thus, a mechanism must exist to restrict each snRNA to its own spliceosome. Here we show that a chimeric U6 snRNA containing the unique and highly conserved 3′ end domain of U6atac snRNA is able to function in vivo in U12-dependent spliceosomal splicing. Function of this chimera required the coexpression of a modified U4atac snRNA; U4 snRNA could not substitute. Partial deletions of this element in vivo, as well as in vitro antisense experiments, showed that the 3′ end domain of U6atac snRNA is necessary to direct the U4atac/U6atac.U5 tri-snRNP to the forming U12-dependent spliceosome. In vitro experiments also uncovered a role for U4atac snRNA in this targeting.  相似文献   

15.
The organization of U2 genes was compared in apes, Old World monkeys, and the prosimian galago. In humans and all apes (gibbon, orangutan, gorilla, and chimpanzee), the U2 genes were organized as a tandem repeat of a 6-kb element; however, the restriction maps of the 6-kb elements in these divergent species differed slightly, demonstrating that mechanisms must exist for maintaining sequence homogeneity within this tandem array. In Old World monkeys, the U2 genes were organized as a tandem repeat of an 11-kb element; the restriction maps of the 11-kb elements in baboon and two closely related macaques, bonnet and rhesus monkeys, also differed slightly, confirming that efficient sequence homogenization is an intrinsic property of the U2 tandem array. Interestingly, the 11-kb monkey repeat unit differed from the 6-kb hominid repeat unit by a 5-kb block of monkey-specific sequence. Finally, we found that the U2 genes of the prosimian galago were dispersed rather than tandemly repeated, suggesting that the hominid and Old World monkey U2 tandem arrays resulted from independent amplifications of a common ancestral U2 gene. Alternatively, the 5-kb monkey-specific sequence could have been inserted into the 6-kb array or deleted from the 11-kb array soon after divergence of the hominid and Old World monkey lineages.  相似文献   

16.
We note the existence of a "partially cis-acting" regulatory protein of bacteriophage λ: the product of the phage Q gene. We suggest that there may be a complete spectrum from "all cis" to "all trans" for such regulatory proteins. This behavior might arise because a DNA-binding protein either acts at a nearby (cis) site soon after synthesis or becomes "lost" for its trans activity on another genome through nonspecific interactions with DNA. Our proposed explanation provides one evolutionary basis for the linkage of genes for regulatory proteins and the sites at which such proteins act; it also suggests a possible rationale for the "metabolic instability" of certain regulatory proteins.  相似文献   

17.
18.
19.
Chang NC  Nguyen M  Shore GC 《Autophagy》2012,8(5):856-857
CISD2, an ER BCL2-associated autophagy regulator also known as NAF-1, is responsible for the human degenerative disorder Wolfram Syndrome 2. In order to interrogate the physiological role of CISD2 we generated and characterized the Cisd2 gene deletion in mice. Cisd2 null mice manifest significant degeneration in skeletal muscle tissues, which is accompanied with augmented autophagy, dysregulated Ca ( 2+) homeostasis and elongated mitochondria. Our findings describe a novel role for BCL2-CISD2 in the homeostatic maintenance of skeletal muscle. It remains to be elucidated how and if the antagonism of the BECN1 autophagy-initiating complex and modulation of ER Ca ( 2+) homeostasis by BCL2-CISD2 are interconnected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号