首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential role of nitric oxide radical (NO ·) in macrophage-mediated oxidation and conversion of human low density lipoprotein (LDL) to a high-uptake form was examined by exposing LDL to aerobic solutions to either NO · or 3-morpholinosydnonimine-hydrochloride (SIN-1, a compound that spontaneously forms NO · and superoxide anion radical) or to mouse peritoneal macrophages in the presence and absence of modulators of cellular NO · synthesis. Incubation with NO · alone caused oxidation of LDL's ubiquinol-10 and accumulation of small amounts of lipid hydroperoxidases, but failed to form any high-uptake ligand for endocytosis by macrophages and did not alter the LDL particle charge or the integrity of apoB. Exposure of LDL to SIN-1 resulted in complete consumption of all antioxidants and substantial formation of lipid hydroperoxidases, but again had little effect on the lipoprotein particle charge or generation of high-uptake form. Preincubation of macrophages with interferon-γ increased the cells ability to generate reactive nitrogen metabolites. The extent of cell-mediated oxidation of LDL and the generation of high-uptake LDL was substantial in resident cells in which NO · synthesis was barely detectable, depressed in cells active in NO · synthesis and restored when NO · synthesis was suppressed by the arginine analogue, NMMA. These results suggest that, while longer with superoxide anion radical, NO · can oxidize LDL, its synthesis is not required for macrophage-mediated oxidation of LDL in vitro; rather it exerts a protective role in preventing oxidative LDL modification by macrophages.  相似文献   

2.
Oxidation of low density lipoprotein (LDL) has been shown to occur in the artery wall of atherosclerotic lesions in both animal models and human arteries. The oxidant(s) responsible for initiating this process are under intensive investigation and 15-lipoxygenase has been suggested in this context. Another possibility is that nitric oxide and superoxide, generated by cells present in the artery wall, react together to form peroxynitrite which decomposes to form the highly reactive hydroxyl radical. In the present study we have modelled the simultaneous generation of superoxide and nitric oxide by using the sydnonimine, SIN-1 and have investigated its effects on LDL. SIN-1 liberates both superoxide and nitric oxide during autooxidation resulting in the formation of hydroxyl radicals. We have demonstrated that superoxide generated by SIN-1 is not available to take part in a dismutation reaction since it reacts preferentially with nitric oxide. It follows, therefore, that during the autooxidation of SIN-1 little or no superoxide, or perhydroxyl radical will be available to initiate lipid peroxidation. We have shown that SIN-1 is capable of initiating the peroxidation of LDL and also converts the lipoprotein to a more negatively charged form. The SIN-1-dependent peroxidation of LDL is completely inhibited by superoxide dismutase which scavenges superoxide. Neither sodium nitroprusside or S-nitroso-n-acetyl penicillamine, which only produce nitric oxide, are able to modify LDL. These results are consistent with the hypothesis that a product of superoxide and nitric oxide could oxidize lipoproteins in the artery wall and so contribute to the pathogenesis of atherosclerosis in vivo.  相似文献   

3.
To test our hypothesis that interferon-gamma (IFN-gamma) has a direct prooxidant effect on macrophage-mediated LDL oxidation behind its antioxidant effect via induction of inducible nitric oxide synthase (iNOS), we incubated LDL with wild-type (iNOS(+/+)) or iNOS knockout mouse (iNOS(-/-)) macrophages preincubated with IFN-gamma or IFN-gamma plus lipopolysaccharide (IFN-gamma/LPS) for 24 h. LDL oxidation was measured in terms of formation of thiobarbituric acid reactive substances (TBARS) and electrophoretic mobility. Thiol production, nitrite production, and superoxide production from macrophages were measured by using Ellman's assay, the Griess reagent, and the SOD-inhibitable cytochrome c reduction method, respectively. IFN-gamma alone or combined with LPS induced iNOS expression and increased nitrite production in iNOS(+/+) macrophages, but not in iNOS(-/-) macrophages. TBARS formation from LDL was suppressed in IFN-gamma- and IFN-gamma/LPS-treated iNOS(+/+) macrophages but was increased in IFN-gamma-treated iNOS(-/-) macrophages. In the presence of N(G)-monomethyl-l-arginine (l-NMMA), a NOS inhibitor, the suppressive effect of IFN-gamma and IFN-gamma/LPS was abolished and TBARS formation was even increased to a level above that of untreated iNOS(+/+) macrophage. NOC 18, an NO donor, dose dependently inhibited macrophage-mediated LDL oxidation. IFN-gamma increased superoxide and thiol productions in both types of macrophages. We conclude that IFN-gamma promotes macrophage-mediated LDL oxidation by stimulating superoxide and thiol production under conditions where iNOS-catalyzed NO release is restricted.  相似文献   

4.
Guanidinosuccinic acid (GSA) is noted for its nitric oxide (NO) mimicking actions such as vasodilatation and activation of the N-methyl-D-aspartate (NMDA) receptor. We have reported that GSA is the product of argininosuccinate (ASA) and some reactive oxygen species, mainly the hydroxyl radical. We tested for GSA synthesis in the presence of NO donors. ASA (1 mM) was incubated with NOR-2, NOC-7 or 3-morpholinosydomine hydrochloride (SIN-1) at 37°C. GSA was determined by HPLC using a cationic resin for separation and phenanthrenequinone as an indicator. Neither NOR-2 or NOC-7 formed GSA. SIN-1, on the other hand, generates NO and the superoxide anion which, in turn, generated peroxynitrite which was then converted to the hydroxyl radical. Incubation of ASA with SIN-1 leads, via this route, to GSA. When ASA was incubated with 1 mM SIN-1, the amount of GSA produced depended on the incubation time and the concentration of ASA. Among the tested SIN-1 concentrations, from 0.5 to 5 mM, GSA synthesis was maximum at 0.5 mM and decreased with increasing concentrations of SIN-1. Carboxy-PTIO, a NO scavenger, completely inhibited GSA synthesis. SOD, a superoxide scavenger, decreased GSA synthesis by 20%, and catalase inhibited GSA synthesis only by 12%; DMSO, a hydroxyl radical scavenger completely inhibited GSA synthesis in the presence of SIN-1. These data suggest that the hydroxyl radical derived from a combination of NO and the superoxide anion generates GSA, a stable NO mimic. Meanwhile, synthesis of GSA by NO produces reactive oxygen and activates the NMDA receptor that generates NO from GSA, suggesting a positive feed back mechanism.  相似文献   

5.
Human monocytes, upon activation with opsonized zymosan, altered low-density lipoprotein (LDL) during a 24-h co-incubation, resulting in its oxidation and acquisition of cytotoxic activity against target fibroblast cell lines. Both the oxidation of LDL and its conversion to a cytotoxin were enhanced with time of incubation, with the most substantial changes occurring after 6 h of culture of LDL with activated monocytes. Unactivated monocytes did not mediate either alteration. Superoxide anion (O2-) participated in both the oxidation of LDL and its conversion to a cytotoxin since addition of superoxide dismutase (SOD) at the beginning of the co-incubation inhibited, in a concentration dependent fashion, both the monocyte-mediated oxidation and the monocyte-mediated conversion of LDL to a cytotoxin. As expected, the rate of superoxide anion release was greatest during the respiratory burst, very early in the 24-h incubation (0 to 2 h); however, exposure of LDL to monocytes during the respiratory burst was not required for LDL oxidation. The lower levels of O2- released by the cells hours after the respiratory burst had subsided were sufficient to lead to the initiation of LDL oxidation. Three results indicated that the oxidative modification of LDL into a cytotoxin required O2(-)-independent free radical propagation after O2(-)-dependent initiation. First, oxidation of LDL exposed to the activated, superoxide anion-releasing monocytes for 6 h could be almost completely blocked by the addition at 6 h of the general free radical scavenger butylated hydroxytoluene, but not by SOD. Second, LDL oxidation proceeded even after removal of LDL from the superoxide anion-producing, activated cells after various durations of exposure. Third, the development of substantial levels of lipid peroxidation products and the development of greater cytotoxicity occurred after 6 h of exposure of LDL to activated cells, long after peak O2- release had subsided. These results lead us to conclude that monocyte-mediated oxidation of LDL, leading to its transformation into a cytotoxin, requires release of O2- occurring as a result of activation but not necessarily during the respiratory burst, and also requires O2(-)-independent free radical propagation. The modification of LDL into a potent toxin by activated monocytes may explain the tissue damage in atherosclerotic lesions and other pathologic sites in which inflammatory cells congregate.  相似文献   

6.
Murine and human macrophages rapidly decreased the level of cholesteryl ester hydroperoxides in low density lipoprotein (LDL) when cultured in media non-permissive for LDL oxidation. This process was proportional to cell number but could not be attributed to the net lipoprotein uptake. Macrophage-mediated loss of lipid hydroperoxides in LDL appears to be metal ion-independent. Degradation of cholesteryl linoleate hydroperoxides was accompanied by accumulation of the corresponding hydroxide as the major product and cholesteryl keto-octadecadienoate as a minor product, although taken together these products could not completely account for the hydroperoxide consumption. Cell-conditioned medium possessed a similar capacity to remove lipid hydroperoxides as seen with cellular monolayers, suggesting that the activity is not an integral component of the cell but is secreted from it. The activity of cell-conditioned medium to lower the level of LDL lipid hydroperoxides is associated with its high molecular weight fraction and is modulated by the availability of free thiol groups. Cell-mediated loss of LDL cholesteryl ester hydroperoxides is facilitated by the presence of alpha-tocopherol in the lipoprotein. Together with our earlier reports on the ability of macrophages to remove peroxides rapidly from oxidized amino acids, peptides, and proteins as well as to clear selectively cholesterol 7-beta-hydroperoxide, results presented in this paper provide evidence of a potential protective activity of the cell against further LDL oxidation by removing reactive peroxide groups in the lipoprotein.  相似文献   

7.
We have previously shown that paraoxonase 1 action on macrophages produced lysophosphatidylcholine (LPC) and significantly decreased cell-mediated LDL oxidation. Thus, in the present study, we questioned whether LPC can directly inhibit macrophage-mediated oxidation of LDL. Addition of increasing LPC concentrations (0-5 microM) to J774A.1 macrophages, mouse peritoneal macrophages (MPM), or to human monocytes-derived macrophages (HMDM) resulted in up to 83%, 67%, and 75% inhibition in cell-mediated oxidation of LDL, respectively. The mechanism for this LPC effect involves up to 60% inhibition of superoxide anion release from MPM in response to phorbol ester (PMA), 26% inhibition of PMA-induced NADPH oxidase activation (p47phox translocation from the cytosol to the plasma membrane), and a 2-fold stimulation of the macrophage paraoxonase 2 (PON2) lactonase activity. We thus conclude that inhibition of macrophage-mediated oxidation of LDL by LPC can contribute to attenuation of macrophage foam cell formation and atherosclerotic lesion development.  相似文献   

8.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble alpha-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

9.
This study examined the roles of low-density lipoprotein (LDL) lipid oxidation and peroxide breakdown in its conversion to a form rapidly taken up by mouse peritoneal macrophages. Oxidation of the LDL without decomposition of the hydroperoxide groups was performed by exposure to gamma radiation in air-saturated solutions. Virtually complete decomposition of the hydroperoxides was achieved by treatment of the irradiated LDL with Cu2+ under strictly anaerobic conditions. No uncontrolled LDL uptake by macrophages occurred when the lipoprotein contained less than 150 hydroperoxide groups per particle. More extensively oxidized LDL was taken up and degraded by mouse macrophages significantly faster than the native lipoprotein. The uptake was greatly enhanced by treatment of the oxidized LDL with Cu2+. A significant proportion of the LDL containing intact or copper-decomposed LDL hydroperoxide groups accumulated within the macrophages without further degradation. Treatment of the radiation-oxidized LDL with Cu2+ was accompanied by aggregation of the particles. Competition studies showed that the oxidized LDL was taken up by macrophages via both the LDL and the scavenger receptors, whereas the copper-treated lipoprotein entered the cells only by the scavenger pathway. Phagocytosis also played an important role in the metabolism of all forms of the extensively modified LDL. Our results suggest that minimally-oxidized LDL is not recognized by the macrophage scavenger receptors unless the lipid hydroperoxide groups are decomposed to products able to derivatize the apo B protein.  相似文献   

10.
Simultaneously produced superoxide/nitric oxide radicals (O2*-/NO*) could form peroxynitrite (OONO-) which has been found to cause atherogenic, i.e. oxidative modification of LDL. Aromatic hydroxylation and nitration of the aspirin metabolite salicylate by OONO- has been reported. Therefore we tested if salicylate may be able to protect LDL from oxidation by O2*-/NO* by scavenging the OONO reactive decomposition products. When LDL was exposed to simultaneously produced O2*-/NO* using the sydnonimine SIN-1, salicylate exerted an inhibitory effect on LDL oxidation as measured by TBARS and lipid hydroperoxide formation and alteration in electrophoretic mobility of LDL. The cytotoxic effect of SIN-1 pre-oxidised LDL to endothelial cells was also diminished when salicylate was present during SIN-1 treatment of LDL. Spectrophotometric analysis revealed that salicylate was converted to dihydroxybenzoic acid (DHBA) derivatives in the presence of SIN-1. 2,3- and 2,5-DHBA were even more effective to protect LDL from oxidation by O2*-/NO*. Because O2*-/NO* can occur in vivo, the results may indicate that salicylate could act as an efficacious inhibitor of O2*-/NO* initiated atherogenic LDL modification, thus further supporting the rationale of aspirin medication regarding cardiovascular diseases.  相似文献   

11.
Peroxynitrite (PN), the product of the diffusion-limited reaction between nitric oxide (*NO) and superoxide (O*-(2)), represents a relevant mediator of oxidative modifications in low-density lipoprotein (LDL). This work shows for the first time the simultaneous action of low-controlled fluxes of PN and *NO on LDL oxidation in terms of lipid and protein modifications as well as oxidized lipid-protein adduct formation. Fluxes of PN (e.g., 1 microM min(-1)) initiated lipid oxidation in LDL as measured by conjugated dienes and cholesteryl ester hydroperoxides formation. Oxidized-LDL exhibited a characteristic fluorescent emission spectra (lambda(exc) = 365 nm, lambda(max) = 417 nm) in parallel with changes in both the free amino groups content and the relative electrophoretic mobility of the particle. Physiologically relevant fluxes of *NO (80-300 nM min(-1)) potently inhibited these PN-dependent oxidative processes. These results are consistent with PN-induced adduct formation between lipid oxidation products and free amino groups of LDL in a process prevented by the simultaneous presence of *NO. The balance between rates of PN and *NO production in the vascular wall will critically determine the final extent of LDL oxidative modifications leading or not to scavenger receptor-mediated LDL uptake and foam cell formation.  相似文献   

12.
Low density lipoprotein (LDL) has been reported to be injurious or toxic to cells in vitro. This injurious effect is, in some instances, due to oxidation of the lipid moiety of the lipoprotein. The objectives of this study were to determine if the oxidation rendering the lipoprotein toxic to human skin fibroblasts occurred by free radical mechanisms, and if so, which of the common free radical oxygen species were involved. The selective free radical blockers or scavengers employed included superoxide dismutase for superoxide, catalase for hydrogen peroxide, dimethylfuran for singlet molecular oxygen, and mannitol for hydroxyl radical. The presence during lipoprotein preparation of general free radical scavengers (vitamin E, butylated hydroxytoluene) or the divalent cation chelator ethylenediamine tetraacetic acid prevented the formation of cytotoxic low density lipoprotein, while the simultaneous presence of superoxide dismutase and catalase partially inhibited its formation. The results indicate that superoxide and/or hydrogen peroxide are involved in the formation of the toxic LDL lipid. The toxic action of oxidized LDL could not be prevented by inclusion of antioxidants in the culture medium, indicating that an oxidized lipid was responsible for cell injury rather than free radicals generated in culture by the action of oxidized LDL. Three separate assays for cell injury (enumeration of attached cells, cell loss of lactate dehydrogenase into the culture medium, and trypan blue uptake) indicated a sequence of events in which the fibroblasts are injured, die, and then detach.  相似文献   

13.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2′-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble α-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

14.
Using bioluminescence assays for glycerol, free fatty acids, β-hydroxybutyrate and lactate, we were able to perform complex studies of human energy and lipid metabolism both in serum samples in vivo and in isolated fat cells in vitro. These studies would have been impossible without reliable, specific and highly sensitive luminescence methods. Oxidatively modified low density lipoprotein (LDL) has been implicated in the pathogenesis of atherosclerosis. Adaptation of a chemiluminescence assay for lipid hydroperoxides to LDL isolated by specific precipitation from serum makes it possible to measure LDL oxidation in vivo. Cell dependent chemiluminescence was used to investigate whether receptor mediated endocytosis of LDL by macrophages leads to oxygen radical production in these cells. No activation of the membrane NAD(P)H oxidase was observed.  相似文献   

15.
Diphenyl-1-pyrenylphosphine (DPPP), which reacts with lipid hydroperoxide stoichiometrically to yield a fluorescent product DPPP oxide (DPPP=O) and the corresponding hydroxide, was used as a fluorescent probe for lipid peroxidation in low-density lipoprotein (LDL). DPPP was successfully incorporated into LDL using the dispersion reagent Pluronic F-127. Incorporation of DPPP into LDL was confirmed by gel filtration chromatography. Reaction of DPPP with hydroperoxide within an LDL particle was examined by monitoring the increase in fluorescence intensity of the LDL. It was found that lipid-soluble hydroperoxides such as methyl linoleate hydroperoxide preferably reacted with DPPP, whereas hydrogen peroxide did not. Fluorescence was increased at the early stages in the oxidation of DPPP-labeled LDL by an azo radical initiator or human neutrophils. LDL, which was labeled with DPPP or DPPP=O, was taken up by cells such as THP-1-derived macrophages and human umbilical vein endothelial cells. The fluorescence of DPPP=O could be observed in cells using fluorescence microscopy equipped with a cooled charge coupled device camera in a nondestructive manner. The present study shows that DPPP is a sensitive, selective, and quantitative probe for monitoring LDL oxidation and visualizing intracellular oxidation.  相似文献   

16.
A large body of evidence supports the key role of oxidized low-density lipoprotein in atherosclerosis. The aim of this study was to compare the capacity of natural polyphenols (PP) from Vitis vinifera and Olea europea at protecting LDL against oxidation brought about by Cu 2+ , oxygen-centered radical-generating AAPH, or peroxynitrite-generating SIN-1 in vitro systems, or at impairing superoxide production in promonocyte cells (THP-1) conveniently differentiated into adherent macrophages. PP were either from the whole grape (fraction A) containing mainly procyanidins, (epi)-catechin and anthocyanins, or from grape seed extracts (fractions B and C) consisting of tannins and procyanidin oligomers with a higher content in B than in C, or from a grape skin extract (fraction D) consisting mainly of anthocyanins, or from a hydrosoluble olive mill wastewater PP extract (fraction E) containing hydroxytyrosol and oleuropein. Chlorogenic acid (F) and catechin (G) were taken as archetypes of PP preventing oxidation partly as copper scavenger and as radical scavenger only, respectively. All grape fractions were efficient towards Cu 2+ system (equally or more efficient than F), whereas they were rather poorly efficient towards AAPH and SIN-1 (less efficient than G but as efficient as F). Among the PP fractions, B was the most effective at protecting LDL in the SIN-1 system and at impairing THP-1 superoxide production. Taken together, these data suggest that the PP fraction from grape seed rich in procyanidins achieves the best compromise between the direct and indirect (i.e. cell-mediated) types of action in protecting LDL against oxidation, strengthening the need for improving the knowledge of its bioavailability in humans.  相似文献   

17.
A large body of evidence supports the key role of oxidized low-density lipoprotein in atherosclerosis. The aim of this study was to compare the capacity of natural polyphenols (PP) from Vitis vinifera and Olea europea at protecting LDL against oxidation brought about by Cu 2+ , oxygen-centered radical-generating AAPH, or peroxynitrite-generating SIN-1 in vitro systems, or at impairing superoxide production in promonocyte cells (THP-1) conveniently differentiated into adherent macrophages. PP were either from the whole grape (fraction A) containing mainly procyanidins, (epi)-catechin and anthocyanins, or from grape seed extracts (fractions B and C) consisting of tannins and procyanidin oligomers with a higher content in B than in C, or from a grape skin extract (fraction D) consisting mainly of anthocyanins, or from a hydrosoluble olive mill wastewater PP extract (fraction E) containing hydroxytyrosol and oleuropein. Chlorogenic acid (F) and catechin (G) were taken as archetypes of PP preventing oxidation partly as copper scavenger and as radical scavenger only, respectively. All grape fractions were efficient towards Cu 2+ system (equally or more efficient than F), whereas they were rather poorly efficient towards AAPH and SIN-1 (less efficient than G but as efficient as F). Among the PP fractions, B was the most effective at protecting LDL in the SIN-1 system and at impairing THP-1 superoxide production. Taken together, these data suggest that the PP fraction from grape seed rich in procyanidins achieves the best compromise between the direct and indirect (i.e. cell-mediated) types of action in protecting LDL against oxidation, strengthening the need for improving the knowledge of its bioavailability in humans.  相似文献   

18.
1. The kinetics of the depletion of alpha-tocopherol in human low-density lipoprotein (LDL) were measured during macrophage-mediated and cell-free oxidation. The formation of oxidatively modified, high-uptake species of LDL in these systems was not detectable until all of the endogenous alpha-tocopherol had been consumed. 2. Supplementation of the alpha-tocopherol content of LDL by loading in vivo extended the duration of the lag period during which no detectable oxidative modification occurred. 3. The addition of a flavonoid (morin) prevented both alpha-tocopherol consumption and oxidative modification of LDL. 4. The alpha-tocopherol contents of LDLs from a range of individual donors could not be used to predict their relative resistance to oxidation, indicating that other endogenous antioxidants may also be present, and quantitatively significant, in human LDL.  相似文献   

19.
Tanshinone II-A (TSII-A) is a major component of Salvia miltorrhiza Bunge which has long been used for preventing and ameliorating anginal pain in China. However the effect of TSII-A on low density lipoprotein (LDL) oxidation has not been studied. The present study was performed to investigate the effects of TSII-A on LDL oxidation using four oxidizing systems, including copper-, peroxyl radical- and peroxynitriteinitiated and macrophage-mediated LDL oxidation. LDL oxidation was measured in terms of formation of thiobarbituric acid-reactive substances (TBARS), relative electrophoretic mobility (REM) on agarose gel and lag time. In all four systems, TSII-A has apparent antioxidative effects against LDL oxidation, as evidenced by its dose-dependent inhibition of TBARS formation, prolongation of lag time and suppression of increased REM.

Regarding the mechanism underlying its antioxidative effect, TSII-A neither scavenged superoxide nor peroxynitrite. It also did not chelate copper. But it has mild peroxyl radical scavenging activity. The direct binding to LDL particles and conformational change of LDL structure by TSII-A were suggested, because it increased negative charge of LDL which was shown by increased REM on agarose gel. In conclusion, TSII-A is an effective antioxidant against LDL oxidation in vitro. The underlying mechanism appears to be related to its peroxyl radical scavenging and LDL binding activity.  相似文献   

20.
Tanshinone II-A inhibits low density lipoprotein oxidation in vitro   总被引:5,自引:0,他引:5  
Tanshinone II-A (TSII-A) is a major component of Salvia miltorrhiza Bunge which has long been used for preventing and ameliorating anginal pain in China. However the effect of TSII-A on low density lipoprotein (LDL) oxidation has not been studied. The present study was performed to investigate the effects of TSII-A on LDL oxidation using four oxidizing systems, including copper-, peroxyl radical- and peroxynitriteinitiated and macrophage-mediated LDL oxidation. LDL oxidation was measured in terms of formation of thiobarbituric acid-reactive substances (TBARS), relative electrophoretic mobility (REM) on agarose gel and lag time. In all four systems, TSII-A has apparent antioxidative effects against LDL oxidation, as evidenced by its dose-dependent inhibition of TBARS formation, prolongation of lag time and suppression of increased REM.

Regarding the mechanism underlying its antioxidative effect, TSII-A neither scavenged superoxide nor peroxynitrite. It also did not chelate copper. But it has mild peroxyl radical scavenging activity. The direct binding to LDL particles and conformational change of LDL structure by TSII-A were suggested, because it increased negative charge of LDL which was shown by increased REM on agarose gel. In conclusion, TSII-A is an effective antioxidant against LDL oxidation in vitro. The underlying mechanism appears to be related to its peroxyl radical scavenging and LDL binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号