首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 contains genes needed for the coenzyme B(12)-dependent catabolism of 1,2-propanediol. Here the completed DNA sequence of the pdu operon is presented. Analyses of previously unpublished pdu DNA sequence substantiated previous studies indicating that the pdu operon was acquired by horizontal gene transfer and allowed the identification of 16 hypothetical genes. This brings the total number of genes in the pdu operon to 21 and the total number of genes at the pdu locus to 23. Of these, six encode proteins of unknown function and are not closely related to sequences of known function found in GenBank. Two encode proteins involved in transport and regulation. Six probably encode enzymes needed for the pathway of 1,2-propanediol degradation. Two encode proteins related to those used for the reactivation of adenosylcobalamin (AdoCbl)-dependent diol dehydratase. Five encode proteins related to those involved in the formation of polyhedral organelles known as carboxysomes, and two encode proteins that appear distantly related to those involved in carboxysome formation. In addition, it is shown that S. enterica forms polyhedral bodies that are involved in the degradation of 1,2-propanediol. Polyhedra are formed during either aerobic or anaerobic growth on propanediol, but not during growth on other carbon sources. Genetic tests demonstrate that genes of the pdu operon are required for polyhedral body formation, and immunoelectron microscopy shows that AdoCbl-dependent diol dehydratase is associated with these polyhedra. This is the first evidence for a B(12)-dependent enzyme associated with a polyhedral body. It is proposed that the polyhedra consist of AdoCbl-dependent diol dehydratase (and perhaps other proteins) encased within a protein shell that is related to the shell of carboxysomes. The specific function of these unusual polyhedral bodies was not determined, but some possibilities are discussed.  相似文献   

2.
Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium   总被引:14,自引:0,他引:14  
The enteric bacterium Salmonella typhimurium utilizes 1,2-propanediol as a sole carbon and energy source during aerobic growth, but only when the cells are also provided with cobalamin as a nutritional supplement. This metabolism is mediated by the cobalamin-dependent propanediol dehydratase enzyme pathway. Thirty-three insertion mutants were isolated that lacked the ability to utilize propanediol, but retained the ability to degrade propionate. This phenotype is consistent with specific blocks in one or more steps of the propanediol dehydratase pathway. Enzyme assays confirmed that propanediol dehydratase activity was absent in some of the mutants. Thus, the affected genes were designated pdu (for defects in propanediol utilization). Seventeen mutants carried pdu::lac operon fusions, and these fusions were induced by propanediol in the culture medium. All of the pdu mutations were located in a single region (41 map units) on the S. typhimurium chromosome between the his (histidine biosynthesis) and branch I cob (cobalamin biosynthesis) operons. They were shown to be P22-cotransducible with a branch I cob marker at a mean frequency of 12%. Mutants that carried deletions of the genetic material between his and cob also failed to utilize propanediol as a sole carbon source. Based upon the formation of duplications and deletions between different pairs of his::MudA and pdu::MudA insertions, the pdu genes were transcribed in a clockwise direction relative to the S. typhimurium genetic map.  相似文献   

3.
The control region of the pdu/cob regulon in Salmonella typhimurium.   总被引:10,自引:9,他引:1       下载免费PDF全文
The pdu operon encodes proteins for the catabolism of 1,2-propanediol; the nearby cob operon encodes enzymes for the biosynthesis of adenosyl-cobalamin (vitamin B12), a cofactor required for the use of propanediol. These operons are transcribed divergently from distinct promoters separated by several kilobases. The regulation of the two operons is tightly integrated in that both require the positive activator protein PocR and both are subject to global control by the Crp and ArcA proteins. We have determined the DNA nucleotide sequences of the promoter-proximal portion of the pdu operon and the region between the pdu and cob operons. Four open reading frames have been identified, pduB, pduA, pduF, and pocR. The pduA and pduB genes are the first two genes of the pdu operon (transcribed clockwise). The pduA gene encodes a hydrophobic protein with 56% amino acid identity to a 10.9-kDa protein which serves as a component of the carboxysomes of several photosynthetic bacteria. The pduF gene encodes a hydrophobic protein with a strong similarity to the GlpF protein of Escherichia coli, which facilitates the diffusion of glycerol. The N-terminal end of the PduF protein includes a motif for a membrane lipoprotein-lipid attachment site as well as a motif characteristic of the MIP (major intrinsic protein) family of transmembrane channel proteins. We presume that the PduF protein facilitates the diffusion of propanediol. The pocR gene encodes the positive regulatory protein of the cob and pdu operons and shares the helix-turn-helix DNA binding motif of the AraC family of regulatory proteins. The mutations cobR4 and cobR58 cause constitutive, pocR-independent expression of the cob operon under both aerobic and anaerobic conditions. Evidence that each mutation is a deletion creating a new promoter near the normal promoter site of the cob operon is presented.  相似文献   

4.
5.
Salmonella enterica forms polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. These organelles are thought to consist of a proteinaceous shell that encases coenzyme B(12)-dependent diol dehydratase and perhaps other enzymes involved in 1,2-propanediol degradation. The function of these organelles is unknown, and no detailed studies of their structure have been reported. Genes needed for organelle formation and for 1,2-propanediol degradation are located at the 1,2-propanediol utilization (pdu) locus, but the specific genes involved in organelle formation have not been identified. Here, we show that the pduA gene encodes a shell protein required for the formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. A His(6)-PduA fusion protein was purified from a recombinant Escherichia coli strain and used for the preparation of polyclonal antibodies. The anti-PduA antibodies obtained were partially purified by a subtraction procedure and used to demonstrate that the PduA protein localized to the shell of the polyhedral organelles. In addition, electron microscopy studies established that strains with nonpolar pduA mutations were unable to form organelles. These results show that the pduA gene is essential for organelle formation and indicate that the PduA protein is a structural component of the shell of these organelles. Physiological studies of nonpolar pduA mutants were also conducted. Such mutants grew similarly to the wild-type strain at low concentrations of 1,2-propanediol but exhibited a period of interrupted growth in the presence of higher concentrations of this growth substrate. Growth tests also showed that a nonpolar pduA deletion mutant grew faster than the wild-type strain at low vitamin B(12) concentrations. These results suggest that the polyhedral organelles formed by S. enterica during growth on 1,2-propanediol are not involved in the concentration of 1,2-propanediol or coenzyme B(12), but are consistent with the hypothesis that these organelles moderate aldehyde production to minimize toxicity.  相似文献   

6.
T A Bobik  Y Xu  R M Jeter  K E Otto    J R Roth 《Journal of bacteriology》1997,179(21):6633-6639
The propanediol utilization (pdu) operon of Salmonella typhimurium encodes proteins required for the catabolism of propanediol, including a coenzyme B12-dependent propanediol dehydratase. A clone that expresses propanediol dehydratase activity was isolated from a Salmonella genomic library. DNA sequence analysis showed that the clone included part of the pduF gene, the pduABCDE genes, and a long partial open reading frame (ORF1). The clone included 3.9 kbp of pdu DNA which had not been previously sequenced. Complementation and expression studies with subclones constructed via PCR showed that three genes (pduCDE) are necessary and sufficient for propanediol dehydratase activity. The function of ORF1 was not determined. Analyses showed that the S. typhimurium propanediol dehydratase was related to coenzyme B12-dependent glycerol dehydratases from Citrobacter freundii and Klebsiella pneumoniae. Unexpectedly, the S. typhimurium propanediol dehydratase was found to be 98% identical in amino acid sequence to the Klebsiella oxytoca propanediol dehydratase; this is a much higher identity than expected, given the relationship between these organisms. DNA sequence analyses also supported previous studies indicating that the pdu operon was inherited along with the adjacent cobalamin biosynthesis operon by a single horizontal gene transfer.  相似文献   

7.
Cyanobacteria have evolved a unique carbon fixation organelle known as the carboxysome that compartmentalizes the enzymes RuBisCO and carbonic anhydrase. This effectively increases the local CO2 concentration at the active site of RuBisCO and decreases its relatively unproductive side reaction with oxygen. Carboxysomes consist of a protein shell composed of hexameric and pentameric proteins arranged in icosahedral symmetry. Facets composed of hexameric proteins are connected at the vertices by pentameric proteins. Structurally homologous pentamers and hexamers are also found in heterotrophic bacteria where they form architecturally related microcompartments such as the Eut and Pdu organelles for the metabolism of ethanolamine and propanediol, respectively. Here we describe two new high-resolution structures of the pentameric shell protein CcmL from the cyanobacteria Thermosynechococcus elongatus and Gloeobacter violaceus and provide detailed analysis of their characteristics and comparison with related shell proteins.  相似文献   

8.
Bacterial microcompartments (MCPs) are complex organelles that consist of metabolic enzymes encapsulated within a protein shell. In this study, we investigate the function of the PduJ MCP shell protein. PduJ is 80% identical in amino acid sequence to PduA and both are major shell proteins of the 1,2‐propanediol (1,2‐PD) utilization (Pdu) MCP of Salmonella. Prior studies showed that PduA mediates the transport of 1,2‐PD (the substrate) into the Pdu MCP. Surprisingly, however, results presented here establish that PduJ has no role 1,2‐PD transport. The crystal structure revealed that PduJ was nearly identical to that of PduA and, hence, offered no explanation for their differential functions. Interestingly, however, when a pduJ gene was placed at the pduA chromosomal locus, the PduJ protein acquired a new function, the ability to mediate 1,2‐PD transport into the Pdu MCP. To our knowledge, these are the first studies to show that that gene location can determine the function of a MCP shell protein. We propose that gene location dictates protein‐protein interactions essential to the function of the MCP shell.  相似文献   

9.
D Walter  M Ailion    J Roth 《Journal of bacteriology》1997,179(4):1013-1022
Salmonella typhimurium is able to catabolize 1,2-propanediol for use as the sole carbon and energy source; the first enzyme of this pathway requires the cofactor adenosyl cobalamin (Ado-B12). Surprisingly, Salmonella can use propanediol as the sole carbon source only in the presence of oxygen but can synthesize Ado-B12 only anaerobically. To understand this situation, we have studied the pdu operon, which encodes proteins for propanediol degradation. A set of pdu mutants defective in aerobic degradation of propanediol (with exogenous vitamin B12) defines four distinct complementation groups. Mutations in two of these groups (pduC and pduD) eliminate propanediol dehydratase activity. Based on mutant phenotypes, a third complementation group (pduG) appears to encode a cobalamin adenosyl transferase activity. No function has been assigned to the pduJ complementation group. Propionaldehyde dehydrogenase activity is eliminated by mutations in any of the four identified complementation groups, suggesting that this activity may require a complex of proteins encoded by the operon. None of the mutations analyzed affects either of the first two genes of the operon (pduA and pduB), which were identified by DNA sequence analysis. Available data suggest that the pdu operon includes enough DNA for about 15 genes and that the four genetically identified genes are the only ones required for aerobic use of propanediol.  相似文献   

10.
PduS is a corrin reductase and is required for the reactivation of the cobalamin-dependent diol dehydratase. It is one component encoded within the large propanediol utilisation (pdu) operon, which is responsible for the catabolism of 1,2-propanediol within a self-assembled proteinaceous bacterial microcompartment. The enzyme is responsible for the reactivation of the cobalamin coenzyme required by the diol dehydratase. The gene for the cobalamin reductase from Citrobacter freundii (pduS) has been cloned to allow the protein to be overproduced recombinantly in E. coli with an N-terminal His-tag. Purified recombinant PduS is shown to be a flavoprotein with a non-covalently bound FMN that also contains two coupled [4Fe-4S] centres. It is an NADH-dependent flavin reductase that is able to mediate the one-electron reductions of cob(III)alamin to cob(II)alamin and cob(II)alamin to cob(I)alamin. The [4Fe-4S] centres are labile to oxygen and their presence affects the midpoint redox potential of flavin. Evidence is presented that PduS is able to bind cobalamin, which is inconsistent with the view that PduS is merely a flavin reductase. PduS is also shown to interact with one of the shell proteins of the metabolosome, PduT, which is also thought to contain an [Fe-S] cluster. PduS is shown to act as a corrin reductase and its interaction with a shell protein could allow for electron passage out of the bacterial microcompartment.  相似文献   

11.
Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid‐based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best‐studied MCPs highlighting atomic‐level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.  相似文献   

12.
Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium) is a facultative intracellular pathogen that causes approximately 8,000 reported cases of acute gastroenteritis and diarrhea each year in the United States. Although many successful physiological, biochemical, and genetic approaches have been taken to determine the key virulence determinants encoded by this organism, the sheer number of uncharacterized reading frames observed within the S. enterica genome suggests that many more virulence factors remain to be discovered. We used a liquid chromatography-mass spectrometry-based "bottom-up" proteomic approach to generate a more complete picture of the gene products that S. typhimurium synthesizes under typical laboratory conditions as well as in culture media that are known to induce expression of virulence genes. When grown to logarithmic phase in rich medium, S. typhimurium is known to express many genes that are required for invasion of epithelial cells. Conversely stationary phase cultures of S. typhimurium express genes that are needed for both systemic infection and growth within infected macrophages. Lastly bacteria grown in an acidic, magnesium-depleted minimal medium (MgM) designed to mimic the phagocytic vacuole have been shown to up-regulate virulence gene expression. Initial comparisons of protein abundances from bacteria grown under each of these conditions indicated that the majority of proteins do not change significantly. However, we observed subsets of proteins whose expression was largely restricted to one of the three culture conditions. For example, cells grown in MgM had a higher abundance of Mg(2+) transport proteins than found in other growth conditions. A second more virulent S. typhimurium strain (14028) was also cultured under these same growth conditions, and the results were directly compared with those obtained for strain LT2. This comparison offered a unique opportunity to contrast protein populations in these closely related bacteria. Among a number of proteins displaying a higher abundance in strain 14028 were the products of the pdu operon, which encodes enzymes required for propanediol utilization. These pdu operon proteins were validated in culture and during macrophage infection. Our work provides further support for earlier observations that suggest pdu gene expression contributes to S. typhimurium pathogenesis.  相似文献   

13.
The ethanolamine utilization (Eut) microcompartment is a protein-based metabolic organelle that is strongly associated with pathogenesis in bacteria that inhabit the human gut. The exterior shell of this elaborate protein complex is composed from a few thousand copies of BMC-domain shell proteins, which form a semi-permeable diffusion barrier that provides the interior enzymes with substrates and cofactors while simultaneously retaining metabolic intermediates. The ability of this protein shell to regulate passage of substrate and cofactor molecules is critical for microcompartment function, but the details of how this diffusion barrier can allow the passage of large cofactors while still retaining small intermediates remain unclear. Previous work has revealed two conformations of the EutL shell protein, providing substantial evidence for a gated pore that might allow the passage of large cofactors. Here we report structural and biophysical evidence to show that ethanolamine, the substrate of the Eut microcompartment, acts as a negative allosteric regulator of EutL pore opening. Specifically, a series of X-ray crystal structures of EutL from Clostridium perfringens, along with equilibrium binding studies, reveal that ethanolamine binds to EutL at a site that exists in the closed-pore conformation and which is incompatible with opening of the large pore for cofactor transport. The allosteric mechanism we propose is consistent with the cofactor requirements of the Eut microcompartment, leading to a new model for EutL function. Furthermore, our results suggest the possibility of redox modulation of the allosteric mechanism, opening potentially new lines of investigation.  相似文献   

14.
Bacterial microcompartment (MCP) organelles are cytosolic, polyhedral structures consisting of a thin protein shell and a series of encapsulated, sequentially acting enzymes. To date, different microcompartments carrying out three distinct types of metabolic processes have been characterized experimentally in various bacteria. In the present work, we use comparative genomics to explore the existence of yet uncharacterized microcompartments encapsulating a broader set of metabolic pathways. A clustering approach was used to group together enzymes that show a strong tendency to be encoded in chromosomal proximity to each other while also being near genes for microcompartment shell proteins. The results uncover new types of putative microcompartments, including one that appears to encapsulate B12‐independent, glycyl radical‐based degradation of 1,2‐propanediol, and another potentially involved in amino alcohol metabolism in mycobacteria. Preliminary experiments show that an unusual shell protein encoded within the glycyl radical‐based microcompartment binds an iron‐sulfur cluster, hinting at complex mechanisms in this uncharacterized system. In addition, an examination of the computed microcompartment clusters suggests the existence of specific functional variations within certain types of MCPs, including the alpha carboxysome and the glycyl radical‐based microcompartment. The findings lead to a deeper understanding of bacterial microcompartments and the pathways they sequester.  相似文献   

15.
Peroxisome biogenesis in yeast   总被引:6,自引:0,他引:6  
Eukaryotic cells have evolved a complex set of intracellular organelles, each of which possesses a specific complement of enzymes and performs unique metabolic functions. This compartmentalization of cellular functions provides a level of metabolic control not available to prokaryotes. However, it presents the eukaryotic cell with the problem of targeting proteins to their specific location(s). Proteins must be efficiently transported from their site of synthesis in the cytosol to their specific organelle(s). Such a process may require translocation across one or more hydrophobic membrane barriers and/or asymmetric integration into specific membranes. Proteins carry cis-acting amino acid sequences that serve to act as recognition motifs for protein sorting and for the cellular translocation machinery. Sequences that target proteins to the endoplasmic reticulum/secretory pathway, mitochondria, and chloroplasts are often present as cleavable amino-terminal extensions. In contrast, most peroxisomal proteins are synthesized at their mature size and are translocated to the organelle without any post-translational modification. This review will summarize what is known about how yeast solve the problem of specifically importing proteins into peroxisomes and will suggest future directions for investigations into peroxisome biogenesis in yeast.  相似文献   

16.
Adenosylcobalamin (Ado-B12) is both the cofactor and inducer of ethanolamine ammonia lyase (EA-lyase), a catabolic enzyme for ethanolamine. De novo synthesis of Ado-B12 by Salmonella enterica occurs only under anaerobic conditions. Therefore, aerobic growth on ethanolamine requires import of Ado-B12 or a precursor (CN-B12 or OH-B12) that can be adenosylated internally. Several known enzymes adenosylate corrinoids. The CobA enzyme transfers adenosine from ATP to a biosynthetic intermediate in de novo B12 synthesis and to imported CN-B12, OH-B12, or Cbi (a B12 precursor). The PduO adenosyl transferase is encoded in an operon (pdu) for cobalamin-dependent propanediol degradation and is induced by propanediol. Evidence is presented here that a third transferase (EutT) is encoded within the operon for ethanolamine utilization (eut). Surprisingly, these three transferases share no apparent sequence similarity. CobA produces sufficient Ado-B12 to initiate eut operon induction and to serve as a cofactor for EA-lyase when B12 levels are high. Once the eut operon is induced, the EutT transferase supplies more Ado-B12 during the period of high demand. Another protein encoded in the operon (EutA) protects EA-lyase from inhibition by CN-B12 but does so without adenosylation of this corrinoid.  相似文献   

17.
Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria form protein-based polyhedral microcompartments which sequester functionally related enzymes and regulate their access to substrates and other small metabolites. Such bacterial microcompartments may be engineered into protein-based nano-bioreactors, provided that they can be assembled in a non-native host cell, and that heterologous enzymes and substrates can be targeted into the engineered compartments. Here, we report that recombinant expression of Salmonella enterica ethanolamine utilization (eut) bacterial microcompartment shell proteins in E. coli results in the formation of polyhedral protein shells. Purified recombinant shells are morphologically similar to the native Eut microcompartments purified from S. enterica. Surprisingly, recombinant expression of only one of the shell proteins (EutS) is sufficient and necessary for creating properly delimited compartments. Co-expression with EutS also facilitates the encapsulation of EGFP fused with a putative Eut shell-targeting signal sequence. We also demonstrate the functional localization of a heterologous enzyme (β-galactosidase) targeted to the recombinant shells. Together our results provide proof-of-concept for the engineering of protein nano-compartments for biosynthesis and biocatalysis.  相似文献   

18.
BackgroundBacterial microcompartments represent the only reported category of prokaryotic organelles that are capable of functioning as independent bioreactors. In this organelle, a biochemical pathway with all the enzyme machinery is encapsulated within an all protein shell. The shell proteins and the enzymes have distinct structural features. It is hypothesized that flat shell proteins align sideways to form extended sheets and, the globular enzymes fill up the central core of the organelle.MethodsUsing differential scanning fluorimetry, we explored the structure and functional alteration of Pdu BMC, involving tertiary or quaternary structures.ResultsOur findings exhibit that these intact BMCs as a whole behave similar to a globular protein with a rich hydrophobic core, which is exposed upon thermal insult. The encapsulated enzymes itself have a strong hydrophobic core, which is in line with the hydrophobic-collapse model of protein folding. The shell proteins, on the other hand, do not have a strong hydrophobic core and show a significant portion of exposed hydrophobic patches.ConclusionWe show for the first time the thermal unfolding profile of the BMC domain proteins and the unique exposure of hydrophobic patches in them might be required for anchoring the enzymes leading to better packaging of the micro-compartments.General significanceThese observations indicate that the genesis of these unique bacterial organelles is driven by the hydrophobic interactions between the shell and the enzymes. Insights from this work will aid in the genetic and biochemical engineering of thermostable efficient enzymatic biomaterials.  相似文献   

19.
Bacterial microcompartments (MCPs) are subcellular organelles that are composed of a protein shell and encapsulated metabolic enzymes. It has been suggested that MCPs can be engineered to encapsulate protein cargo for use as in vivo nanobioreactors or carriers for drug delivery. Understanding the stability of the MCP shell is critical for such applications. Here, we investigate the integrity of the propanediol utilization (Pdu) MCP shell of Salmonella enterica over time, in buffers with various pH, and at elevated temperatures. The results show that MCPs are remarkably stable. When stored at 4°C or at room temperature, Pdu MCPs retain their structure for several days, both in vivo and in vitro. Furthermore, Pdu MCPs can tolerate temperatures up to 60°C without apparent structural degradation. MCPs are, however, sensitive to pH and require conditions between pH 6 and pH 10. In nonoptimal conditions, MCPs form aggregates. However, within the aggregated protein mass, MCPs often retain their polyhedral outlines. These results show that MCPs are highly robust, making them suitable for a wide range of applications.  相似文献   

20.
Only three pathogenic bacterial species, Salmonella enterica, Clostridium perfringens, and Listeria monocytogenes, are able to utilize both ethanolamine and 1,2-propanediol as a sole carbon source. Degradation of these substrates, abundant in food and the gut, depends on cobalamin, which is synthesized de novo only under anaerobic conditions. Although the eut, pdu, and cob-cbi gene clusters comprise 40 kb, the conditions under which they confer a selection advantage on these food-borne pathogens remain largely unknown. Here we used the luciferase reporter system to determine the response of the Salmonella enterica serovar Typhimurium promoters P(eutS), P(pocR), P(pduF), and P(pduA) to a set of carbon sources, to egg yolk, to whole milk, and to milk protein or fat fractions. Depending on the supplements, specific inductions up to 3 orders of magnitude were observed for P(eutS) and P(pduA), which drive the expression of most eut and pdu genes. To correlate these significant expression data with growth properties, nonpolar deletions of pocR, regulating the pdu and cob-cbi genes, and of eutR, involved in eut gene activation, were constructed in S. Typhimurium strain 14028. During exponential growth of the mutants 14028ΔpocR and 14028ΔeutR, 2- to 3-fold-reduced proliferation in milk and egg yolk was observed. Using the Caenorhabditis elegans infection model, we could also demonstrate that the proliferation of S. Typhimurium in the nematode is supported by an active ethanolamine degradation pathway. Taking these findings together, this study quantifies the differential expression of eut and pdu genes under distinct conditions and provides experimental evidence that the ethanolamine utilization pathway allows salmonellae to occupy specific metabolic niches within food environments and within their host organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号