首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.  相似文献   

2.
Calcium-dependent activator protein for secretion 1 (CAPS1) is a multidomain protein containing a Munc13 homology domain 1 (MHD1). Although CAPS1 and Munc13-1 play crucial roles in the priming stage of secretion, their functions are non-redundant. Similar to Munc13-1, CAPS1 binds to syntaxin-1, a key t-SNARE protein in neurosecretion. However, whether CAPS1 interacts with syntaxin-1 in a similar mode to Munc13-1 remains unclear. Here, using yeast two-hybrid assays followed by biochemical binding experiments, we show that the region in CAPS1 consisting of the C-terminal half of the MHD1 with the corresponding C-terminal region can bind to syntaxin-1. Importantly, the binding mode of CAPS1 to syntaxin-1 is distinct from that of Munc13-1; CAPS1 binds to the full-length of cytoplasmic syntaxin-1 with preference to its “open” conformation, whereas Munc13-1 binds to the first 80 N-terminal residues of syntaxin-1. Unexpectedly, the majority of the MHD1 of CAPS1 is dispensable, whereas the C-terminal 69 residues are crucial for the binding to syntaxin-1. Functionally, a C-terminal truncation of 69 or 134 residues in CAPS1 abolishes its ability to reconstitute secretion in permeabilized PC12 cells. Our results reveal a novel mode of binding between CAPS1 and syntaxin-1, which play a crucial role in neurosecretion. We suggest that the distinct binding modes between CAPS1 and Munc13-1 can account for their non-redundant functions in neurosecretion. We also propose that the preferential binding of CAPS1 to open syntaxin-1 can contribute to the stabilization of the open state of syntaxin-1 during its transition from “closed” state to the SNARE complex formation.  相似文献   

3.
The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.  相似文献   

4.
Regulated exocytosis requires the general membrane fusion machinery-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. Using reconstituted giant unilamellar vesicles containing preassembled t-SNARE proteins (syntaxin 1·SNAP-25), we determined how Munc18-1 controls the docking, priming, and fusion of small unilamellar vesicles containing the v-SNARE VAMP2 and the Ca(2+) sensor synaptotagmin 1. In vitro assays allowed us to position Munc18-1 in the center of a sequential reaction cascade; vesicle docking by synaptotagmin 1 is a prerequisite for Munc18-1 to accelerate trans-SNARE complex (SNAREpin) assembly and membrane fusion. Complexin II stalls SNAREpin zippering at a late stage and, hence, contributes to synchronize membrane fusion in a Ca(2+)- and synaptotagmin 1-dependent manner. Thus, at the neuronal synapse, the priming factor Munc18-1 may accelerate the conversion of docked synaptic vesicles into a readily releasable pool by activating SNAREs for efficient membrane fusion.  相似文献   

5.
The spermatozoon is a very specialized cell capable of carrying out a limited set of functions with high efficiency. Sperm are then excellent model cells to dissect fundamental processes such as regulated exocytosis. The secretion of the single dense-core granule of mammalian spermatozoa relies on the same highly conserved molecules and goes through the same stages as exocytosis in other types of cells. In this study, we describe the presence of Munc18-1 in human sperm and show that this protein has an essential role in acrosomal exocytosis. We observed that inactivation of endogenous Munc18-1 with a specific antibody precluded the stabilization of trans-SNARE complexes and inhibited acrosomal exocytosis. Addition of recombinant Munc18-1 blocked secretion by sequestering monomeric syntaxin, an effect that was rescued by α-soluble NSF attachment protein. By electron microscopy, we observed that both the anti-Munc18-1 antibody and recombinant Munc18-1 inhibited the docking of the acrosome to the plasma membrane. In conclusion, our results indicate that Munc18-1 plays a key role in the dynamics of trans-SNARE complex assembly and/or stabilization, a process that is necessary for the docking of the outer acrosomal membrane to the plasma membrane and subsequent fusion pore opening.  相似文献   

6.
Fast neurotransmission and slower hormone release share the same core fusion machinery consisting of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. In evoked neurotransmission, interactions between SNAREs and the Munc18-1 protein, a member of the Sec1/Munc18 (SM) protein family, are essential for exocytosis, whereas other SM proteins are dispensable. To address if the exclusivity of Munc18-1 demonstrated in neuroexocytosis also applied to fast insulin secretion, we characterized the presence and function of Munc18-1 and its closest homologue Munc18-2 in β-cell stimulus-secretion coupling. We show that pancreatic β-cells express both Munc18-1 and Munc18-2. The two Munc18 homologues exhibit different subcellular localization, and only Munc18-1 redistributes in response to glucose stimulation. However, both Munc18-1 and Munc18-2 augment glucose-stimulated hormone release. Ramp-like photorelease of caged Ca(2+) and high resolution whole-cell patch clamp recordings show that Munc18-1 and Munc18-2 overexpression shift the Ca(2+) sensitivity of the fastest phase of insulin exocytosis differently. In addition, we reveal that Ca(2+) sensitivity of exocytosis in β-cells depends on the phosphorylation status of the Munc18 proteins. Even though Munc18-1 emerges as the key SM-protein determining the Ca(2+) threshold for triggering secretory activity in a stimulated β-cell, Munc18-2 has the ability to increase Ca(2+) sensitivity and thus mediates the release of fusion-competent granules requiring a lower cytoplasmic-free Ca(2+) concentration, [Ca(2+)](i)(.) Hence, Munc18-1 and Munc18-2 display distinct subcellular compartmentalization and can coordinate the insulin exocytotic process differently as a consequence of the actual [Ca(2+)](i).  相似文献   

7.
Drp1 is a dynamin-like GTPase that mediates mitochondrial and peroxisomal division in a process dependent on self-assembly and coupled to GTP hydrolysis. Despite the link between Drp1 malfunction and human disease, the molecular details of its membrane activity remain poorly understood. Here we reconstituted and directly visualized Drp1 activity in giant unilamellar vesicles. We quantified the effect of lipid composition and GTP on membrane binding and remodeling activity by fluorescence confocal microscopy and flow cytometry. In contrast to other dynamin relatives, Drp1 bound to both curved and flat membranes even in the absence of nucleotides. We also found that Drp1 induced membrane tubulation that was stimulated by cardiolipin. Moreover, Drp1 promoted membrane tethering dependent on the intrinsic curvature of the membrane lipids and on GTP. Interestingly, Drp1 concentrated at membrane contact surfaces and, in the presence of GTP, formed discrete clusters on the vesicles. Our findings support a role of Drp1 not only in the formation of lipid tubes but also on the stabilization of tightly apposed membranes, which are intermediate states in the process of mitochondrial fission.  相似文献   

8.
Munc18-1, a SEC1/Munc18 protein and key regulatory protein in synaptic transmission, can either promote or inhibit SNARE complex assembly. Although the binary inhibitory interaction between Munc18-1 and closed syntaxin 1 is well described, the mechanism of how Munc18-1 stimulates membrane fusion remains elusive. Using a reconstituted assay that resolves vesicle docking, priming, clamping, and fusion during synaptic exocytosis, we show that helix 12 in domain 3a of Munc18-1 stimulates SNAREpin assembly and membrane fusion. A single point mutation (L348R) within helix 12 selectively abolishes VAMP2 binding and the stimulatory function of Munc18-1 in membrane fusion. In contrast, targeting a natural switch site (P335A) at the start of helix 12, which can result in an extended α-helical conformation, further accelerates lipid-mixing. Together with structural modeling, the data suggest that helix 12 provides a folding template for VAMP2, accelerating SNAREpin assembly and membrane fusion. Analogous SEC1/Munc18-SNARE interactions at other transport steps may provide a general mechanism to drive lipid bilayer merger. At the neuronal synapse, Munc18-1 may convert docked synaptic vesicles into a readily releasable pool.  相似文献   

9.
Glycosylation is a major form of post-translational modification of synaptic vesicle membrane proteins. For example, the three major synaptic vesicle glycoproteins, synaptotagmin 1, synaptophysin, and SV2, represent ∼30% of the total copy number of vesicle proteins. Previous studies suggested that glycosylation is required for the vesicular targeting of synaptotagmin 1, but the role of glycosylation of synaptophysin and SV2 has not been explored in detail. In this study, we analyzed all glycosylation sites on synaptotagmin 1, synaptophysin, and SV2A via mutagenesis and optical imaging of pHluorin-tagged proteins in cultured neurons from knock-out mice lacking each protein. Surprisingly, these experiments revealed that glycosylation is completely dispensable for the sorting of synaptotagmin 1 to SVs whereas the N-glycans on SV2A are only partially dispensable. In contrast, N-glycan addition is essential for the synaptic localization and function of synaptophysin. Thus, glycosylation plays distinct roles in the trafficking of each of the three major synaptic vesicle glycoproteins.  相似文献   

10.
Tomosyn negatively regulates SNARE-dependent exocytic pathways including insulin secretion, GLUT4 exocytosis, and neurotransmitter release. The molecular mechanism of tomosyn, however, has not been fully elucidated. Here, we reconstituted SNARE-dependent fusion reactions in vitro to recapitulate the tomosyn-regulated exocytic pathways. We then expressed and purified active full-length tomosyn and examined how it regulates the reconstituted SNARE-dependent fusion reactions. Using these defined fusion assays, we demonstrated that tomosyn negatively regulates SNARE-mediated membrane fusion by inhibiting the assembly of the ternary SNARE complex. Tomosyn recognizes the t-SNARE complex and prevents its pairing with the v-SNARE, therefore arresting the fusion reaction at a pre-docking stage. The inhibitory function of tomosyn is mediated by its C-terminal domain (CTD) that contains an R-SNARE-like motif, confirming previous studies carried out using truncated tomosyn fragments. Interestingly, the N-terminal domain (NTD) of tomosyn is critical (but not sufficient) to the binding of tomosyn to the syntaxin monomer, indicating that full-length tomosyn possesses unique features not found in the widely studied CTD fragment. Finally, we showed that the inhibitory function of tomosyn is dominant over the stimulatory activity of the Sec1/Munc18 protein in fusion. We suggest that tomosyn uses its CTD to arrest SNARE-dependent fusion reactions, whereas its NTD is required for the recruitment of tomosyn to vesicle fusion sites through syntaxin interaction.  相似文献   

11.
Palmitoylation represents a common motif for anchorage of cytosolic proteins to the plasma membrane. Being reversible, it allows for controlled exchange between cytosolic and plasma membrane-bound subpopulations. In this study, we present a live cell single molecule approach for quantifying the exchange kinetics of plasma membrane and cytosolic populations of fluorescently labeled Lck, the key Src family kinase involved in early T cell signaling. Total internal reflection (TIR) fluorescence microscopy was employed for confining the analysis to membrane-proximal molecules. Upon photobleaching Lck-YFP in TIR configuration, fluorescence recovery proceeds first via the cytosol outside of the evanescent field, so that in the early phase fluorescence signal arises predominantly from membrane-proximal cytosolic Lck. The diffusion constant of each molecule allowed us to distinguish whether the molecule has already associated with the plasma membrane or was still freely diffusing in the cytosol. From the number of molecules that inserted during the recovery time we quantified the insertion kinetics: on average, membrane-proximal molecules within the evanescent field needed ∼400 ms to be inserted. The average lifetime of Lck in the plasma membrane was estimated at 50 s; together with the mobility of 0.26 μm2/s this provides sufficient time to explore the surface of the whole T cell before dissociation into the cytosol. Experiments on palmitoylation-deficient Lck mutants yielded similar on-rates, but substantially increased off-rates. We discuss our findings based on a model for the plasma membrane association and dissociation kinetics of Lck, which accounts for reversible palmitoylation on cysteine 3 and 5.  相似文献   

12.
In neuroexocytosis, SNAREs and Munc18-1 may consist of the minimal membrane fusion machinery. Consistent with this notion, we observed, using single molecule fluorescence assays, that Munc18-1 stimulates SNARE zippering and SNARE-dependent lipid mixing in the absence of a major Ca2+ sensor synaptotagmin-1 (Syt1), providing the structural basis for the conserved function of Sec1/Munc18 proteins in exocytosis. However, when full-length Syt1 is present, no enhancement of SNARE zippering and no acceleration of Ca2+-triggered content mixing by Munc18-1 are observed. Thus, our results show that Syt1 acts as an antagonist for Munc18-1 in SNARE zippering and fusion pore opening. Although the Sec1/Munc18 family may serve as part of the fusion machinery in other exocytotic pathways, Munc18-1 may have evolved to play a different role, such as regulating syntaxin-1a in neuroexocytosis.  相似文献   

13.
14.
The small viral channel Kcv is a Kir-like K(+) channel of only 94 amino acids. With this simple structure, the tetramer of Kcv represents the pore module of all complex K(+) channels. To examine the structural contribution of the transmembrane domains (TMDs) to channel function, we performed Ala scanning mutagenesis of the two domains and tested the functionality of the mutants in a yeast complementation assay. The data reveal, in combination with computational models, that the upper halves of both TMDs, which face toward the external medium, are rather rigid, whereas the inner parts are more flexible. The rigidity of the outer TMD is conferred by a number of essential aromatic amino acids that face the membrane and probably anchor this domain in the bilayer. The inner TMD is intimately connected with the rigid part of the outer TMD via π···π interactions between a pair of aromatic amino acids. This structural principle is conserved within the viral K(+) channels and also present in Kir2.2, implying a general importance of this architecture for K(+) channel function.  相似文献   

15.
Caveolin-1 has a segment of hydrophobic amino acids comprising approximately residues 103–122. We have performed an in silico analysis of the conformational preference of this segment of caveolin-1 using PepLook. We find that there is one main group of stable conformations corresponding to a hydrophobic U bent model that would not traverse the membrane. Furthermore, the calculations predict that substituting the Pro110 residue with an Ala will change the conformation to a straight hydrophobic helix that would traverse the membrane. We have expressed the P110A mutant of caveolin-1, with a FLAG tag at the N terminus, in HEK 293 cells. We evaluate the topology of the proteins with confocal immunofluorescence microscopy in these cells. We find that FLAG tag at the N terminus of the wild type caveolin-1 is not reactive with antibodies unless the cell membrane is permeabilized with detergent. This indicates that in these cells, the hydrophobic segment of this protein is not transmembrane but takes up a bent conformation, making the protein monotopic. In contrast, the FLAG tag at the N terminus of the P110A mutant is equally exposed to antibodies, before and after membrane permeabilization. We also find that the P110A mutation causes a large reduction of endocytosis of caveolae, cellular lipid accumulation, and lipid droplet formulation. In addition, we find that this mutation markedly reduces the ability of caveolin-1 to form structures with the characteristic morphology of caveolae or to partition into the detergent-resistant membranes of these cells. Thus, the single Pro residue in the membrane-inserting segment of caveolin-1 plays an important role in both the membrane topology and localization of the protein as well as its functions.  相似文献   

16.
Munc18-1 plays essential dual roles in exocytosis: (i) stabilizing and trafficking the central SNARE protein, syntaxin-1 (i.e. chaperoning function), by its domain-1; and (ii) priming/stimulating exocytosis by its domain-3a. Here, we examine whether or not domain-3a also plays a significant role in the chaperoning of syntaxin-1 and, if so, how these dual functions of domain-3a are regulated. We demonstrate that introduction of quintuple mutations (K332E/K333E/P335A/Q336A/Y337L) in domain-3a of Munc18-1 abolishes its ability to bind syntaxin-1 and fails to rescue the level and trafficking of syntaxin-1 as well as to restore exocytosis in Munc18-1/2 double knockdown cells. By contrast, a quadruple mutant (K332E/K333E/Q336A/Y337L) sparing the Pro-335 residue retains all of these capabilities. A single point mutant of P335A reduces the ability to bind syntaxin-1 and rescue syntaxin-1 levels. Nonetheless, it surprisingly outperforms the wild type in the rescue of exocytosis. However, when additional mutations in the neighboring residues are combined with P335A mutation (K332E/K333E/P335A, P335A/Q336A/Y337L), the ability of the Munc18-1 variants to chaperone syntaxin-1 and to rescue exocytosis is strongly impaired. Our results indicate that residues from Lys-332 to Tyr-337 of domain-3a are intimately tied to the chaperoning function of Munc18-1. We also propose that Pro-335 plays a pivotal role in regulating the balance between the dual functions of domain-3a. The hinged conformation of the α-helix containing Pro-335 promotes the syntaxin-1 chaperoning function, whereas the P335A mutation promotes its priming function by facilitating the α-helix to adopt an extended conformation.  相似文献   

17.
Sec1p/Munc18 proteins and SNAP receptors (SNAREs) are key components of the intracellular membrane fusion machinery. Compartment-specific v-SNAREs on a transport vesicle pair with their cognate t-SNAREs on the target membrane and drive lipid bilayer fusion. In a reconstituted assay that dissects the sequential assembly of t-SNARE (syntaxin 1·SNAP-25) and v-/t-SNARE (VAMP2·syntaxin 1·SNAP-25) complexes, and finally measures lipid bilayer merger, we resolved the inhibitory and stimulatory functions of the Sec1p/Munc18 protein Munc18-1 at the molecular level. Inhibition of membrane fusion by Munc18-1 requires a closed conformation of syntaxin 1. Remarkably, the concurrent preincubation of Munc18-1-inhibited syntaxin 1 liposomes with both VAMP2 liposomes and SNAP-25 at low temperature releases the inhibition and effectively stimulates membrane fusion. VAMP8 liposomes can neither release the inhibition nor exert the stimulatory effect, demonstrating the need for a specific Munc18-1/VAMP2 interaction. In addition, Munc18-1 binds to the N-terminal peptide of syntaxin 1, which is obligatory for a robust stimulation of membrane fusion. In contrast, this interaction is neither required for the inhibitory function of Munc18-1 nor for the release of this block. These results indicate that Munc18-1 and the neuronal SNAREs already have the inherent capability to function as a basic stage-specific off/on switch to control membrane fusion.  相似文献   

18.
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (−/−) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8−/− acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2–3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8−/− acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8−/− acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14–16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.  相似文献   

19.
The coat protein complex II (COPII) generates transport carriers from the endoplasmic reticulum (ER) under the control of the small GTPase Sar1. Sec23 is well known as a structural component of the COPII coat and as a GTPase-activating protein (GAP) for Sar1. Here, we showed that Saccharomyces cerevisiae contains a novel Sec23 paralog, Nel1, which appears not to function as a subunit of the COPII coat. Nel1 does not associate with any of the COPII components, but it exhibits strong Sar1 GAP activity. We also demonstrated that the chromosomal deletion of NEL1 leads to a significant growth defect in the temperature-sensitive sar1D32G background, suggesting a possible functional link between these proteins. In contrast to Sec23, which is predominantly localized at ER exit sites on the ER membrane, a major proportion of Nel1 is localized throughout the cytosol. Our findings highlight a possible role of Nel1 as a novel GAP for Sar1.  相似文献   

20.
Escherichia coli synthesize over 60 poorly understood small proteins of less than 50 amino acids. A striking feature of these proteins is that 65% contain a predicted α-helical transmembrane (TM) domain. This prompted us to examine the localization, topology, and membrane insertion of the small proteins. Biochemical fractionation showed that, consistent with the predicted TM helix, the small proteins generally are most abundant in the inner membrane fraction. Examples of both N(in)-C(out) and N(out)-C(in) orientations were found in assays of topology-reporter fusions to representative small TM proteins. Interestingly, however, three of nine tested proteins display dual topology. Positive residues close to the transmembrane domains are conserved, and mutational analysis of one small protein, YohP, showed that the positive inside rule applies for single transmembrane domain proteins as has been observed for larger proteins. Finally, fractionation analysis of small protein localization in strains depleted of the Sec or YidC membrane insertion pathways uncovered differential requirements. Some small proteins appear to be affected by both Sec and YidC depletion, others showed more dependence on one or the other insertion pathway, whereas one protein was not affected by depletion of either Sec or YidC. Thus, despite their diminutive size, small proteins display considerable diversity in topology, biochemical features, and insertion pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号