首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Background:

Diabetes-related end-stage renal disease disproportionately affects indigenous peoples. We explored the role of differential mortality in this disparity.

Methods:

In this retrospective cohort study, we examined the competing risks of end-stage renal disease and death without end-stage renal disease among Saskatchewan adults with diabetes mellitus, both First Nations and non–First Nations, from 1980 to 2005. Using administrative databases of the Saskatchewan Ministry of Health, we developed Fine and Gray subdistribution hazards models and cumulative incidence functions.

Results:

Of the 90 429 incident cases of diabetes, 8254 (8.9%) occurred among First Nations adults and 82 175 (90.9%) among non–First Nations adults. Mean age at the time that diabetes was diagnosed was 47.2 and 61.6 years, respectively (p < 0.001). After adjustment for sex and age at the time of diabetes diagnosis, the risk of end-stage renal disease was 2.66 times higher for First Nations than non–First Nations adults (95% confidence interval [CI] 2.24–3.16). Multivariable analysis with adjustment for sex showed a higher risk of death among First Nations adults, which declined with increasing age at the time of diabetes diagnosis. Cumulative incidence function curves stratified by age at the time of diabetes diagnosis showed greatest risk for end-stage renal disease among those with onset of diabetes at younger ages and greatest risk of death among those with onset of diabetes at older ages.

Interpretation:

Because they are typically younger when diabetes is diagnosed, First Nations adults with this condition are more likely than their non–First Nations counterparts to survive long enough for end-stage renal disease to develop. Differential mortality contributes substantially to ethnicity-based disparities in diabetes-related end-stage renal disease and possibly to chronic diabetes complications. Understanding the mechanisms underlying these disparities is vital in developing more effective prevention and management initiatives.Indigenous peoples experience an excess burden of diabetes-related end-stage renal disease,14 but the reasons for this disparity are incompletely understood. Although the increase in end-stage renal disease among indigenous peoples has paralleled the global emergence of type 2 diabetes mellitus,5 disparities in end-stage renal disease among Canada’s First Nations adults persist2 after adjustment for elevated prevalence of diabetes.6 In an earlier study, we suggested that First Nations adults might be more prone to diabetic nephropathy and might experience more rapid progression to end-stage renal disease.7 However, although albuminuria is more prevalent in this population,8 affected individuals unexpectedly have a longer average time from diagnosis of diabetes to end-stage renal disease than people from non–First Nations populations.2 These findings could be explained by a younger age at the time of diabetes diagnosis6 and lower mortality among those with chronic kidney disease.8 An age-related survival benefit among First Nations adults with diabetes could lead to longer exposure to the metabolic consequences of diabetes and greater likelihood of end-stage renal disease.Our objective was to examine the contribution of differential mortality to disparities in diabetes-related end-stage renal disease within large populations of indigenous and non-indigenous North Americans. Accordingly, we used competing-risks survival analysis to compare the simultaneous risks of diabetes-related end-stage renal disease and death without end-stage renal disease among First Nations and non–First Nations adults.9  相似文献   

2.

Background:

Polymyalgia rheumatica is one of the most common inflammatory rheumatologic conditions in older adults. Other inflammatory rheumatologic disorders are associated with an excess risk of vascular disease. We investigated whether polymyalgia rheumatica is associated with an increased risk of vascular events.

Methods:

We used the General Practice Research Database to identify patients with a diagnosis of incident polymyalgia rheumatica between Jan. 1, 1987, and Dec. 31, 1999. Patients were matched by age, sex and practice with up to 5 patients without polymyalgia rheumatica. Patients were followed until their first vascular event (cardiovascular, cerebrovascular, peripheral vascular) or the end of available records (May 2011). All participants were free of vascular disease before the diagnosis of polymyalgia rheumatica (or matched date). We used Cox regression models to compare time to first vascular event in patients with and without polymyalgia rheumatica.

Results:

A total of 3249 patients with polymyalgia rheumatica and 12 735 patients without were included in the final sample. Over a median follow-up period of 7.8 (interquartile range 3.3–12.4) years, the rate of vascular events was higher among patients with polymyalgia rheumatica than among those without (36.1 v. 12.2 per 1000 person-years; adjusted hazard ratio 2.6, 95% confidence interval 2.4–2.9). The increased risk of a vascular event was similar for each vascular disease end point. The magnitude of risk was higher in early disease and in patients younger than 60 years at diagnosis.

Interpretation:

Patients with polymyalgia rheumatica have an increased risk of vascular events. This risk is greatest in the youngest age groups. As with other forms of inflammatory arthritis, patients with polymyalgia rheumatica should have their vascular risk factors identified and actively managed to reduce this excess risk.Inflammatory rheumatologic disorders such as rheumatoid arthritis,1,2 systemic lupus erythematosus,2,3 gout,4 psoriatic arthritis2,5 and ankylosing spondylitis2,6 are associated with an increased risk of vascular disease, especially cardiovascular disease, leading to substantial morbidity and premature death.26 Recognition of this excess vascular risk has led to management guidelines advocating screening for and management of vascular risk factors.79Polymyalgia rheumatica is one of the most common inflammatory rheumatologic conditions in older adults,10 with a lifetime risk of 2.4% for women and 1.7% for men.11 To date, evidence regarding the risk of vascular disease in patients with polymyalgia rheumatica is unclear. There are a number of biologically plausible mechanisms between polymyalgia rheumatica and vascular disease. These include the inflammatory burden of the disease,12,13 the association of the disease with giant cell arteritis (causing an inflammatory vasculopathy, which may lead to subclinical arteritis, stenosis or aneurysms),14 and the adverse effects of long-term corticosteroid treatment (e.g., diabetes, hypertension and dyslipidemia).15,16 Paradoxically, however, use of corticosteroids in patients with polymyalgia rheumatica may actually decrease vascular risk by controlling inflammation.17 A recent systematic review concluded that although some evidence exists to support an association between vascular disease and polymyalgia rheumatica,18 the existing literature presents conflicting results, with some studies reporting an excess risk of vascular disease19,20 and vascular death,21,22 and others reporting no association.2326 Most current studies are limited by poor methodologic quality and small samples, and are based on secondary care cohorts, who may have more severe disease, yet most patients with polymyalgia rheumatica receive treatment exclusively in primary care.27The General Practice Research Database (GPRD), based in the United Kingdom, is a large electronic system for primary care records. It has been used as a data source for previous studies,28 including studies on the association of inflammatory conditions with vascular disease29 and on the epidemiology of polymyalgia rheumatica in the UK.30 The aim of the current study was to examine the association between polymyalgia rheumatica and vascular disease in a primary care population.  相似文献   

3.

Background:

Chronic kidney disease is an important risk factor for death and cardiovascular-related morbidity, but estimates to date of its prevalence in Canada have generally been extrapolated from the prevalence of end-stage renal disease. We used direct measures of kidney function collected from a nationally representative survey population to estimate the prevalence of chronic kidney disease among Canadian adults.

Methods:

We examined data for 3689 adult participants of cycle 1 of the Canadian Health Measures Survey (2007–2009) for the presence of chronic kidney disease. We also calculated the age-standardized prevalence of cardiovascular risk factors by chronic kidney disease group. We cross-tabulated the estimated glomerular filtration rate (eGFR) with albuminuria status.

Results:

The prevalence of chronic kidney disease during the period 2007–2009 was 12.5%, representing about 3 million Canadian adults. The estimated prevalence of stage 3–5 disease was 3.1% (0.73 million adults) and albuminuria 10.3% (2.4 million adults). The prevalence of diabetes, hypertension and hypertriglyceridemia were all significantly higher among adults with chronic kidney disease than among those without it. The prevalence of albuminuria was high, even among those whose eGFR was 90 mL/min per 1.73 m2 or greater (10.1%) and those without diabetes or hypertension (9.3%). Awareness of kidney dysfunction among adults with stage 3–5 chronic kidney disease was low (12.0%).

Interpretation:

The prevalence of kidney dysfunction was substantial in the survey population, including individuals without hypertension or diabetes, conditions most likely to prompt screening for kidney dysfunction. These findings highlight the potential for missed opportunities for early intervention and secondary prevention of chronic kidney disease.Chronic kidney disease is defined as the presence of kidney damage or reduced kidney function for more than 3 months and requires either a measured or estimated glomerular filtration rate (eGFR) of less than 60 mL/min per 1.73 m2, or the presence of abnormalities in urine sediment, renal imaging or biopsy results.1 Between 1.3 million and 2.9 million Canadians are estimated to have chronic kidney disease, based on an extrapolation of the prevalence of end-stage renal disease.2 In the United States, the 1999–2004 National Health and Nutrition Examination Survey reported a prevalence of 5.0% for stage 1 and 2 disease and 8.1% for stage 3 and 4 disease.3,4Chronic kidney disease has been identified as a risk factor for death and cardiovascular-related morbidity and is a substantial burden on the health care system.1,5 Hemodialysis costs the Canadian health care system about $60 000 per patient per year of treatment.1 The increasing prevalence of chronic kidney disease can be attributed in part to the growing elderly population and to increasing rates of diabetes and hypertension.1,6,7Albuminuria, which can result from abnormal vascular permeability, atherosclerosis or renal disease, has gained recognition as an independent risk factor for progressive renal dysfunction and adverse cardiovascular outcomes.810 In earlier stages of chronic kidney disease, albuminuria has been shown to be more predictive of renal and cardiovascular events than eGFR.4,9 This has prompted the call for a new risk stratification for cardiovascular outcomes based on both eGFR and albuminuria.11A recent review advocated screening people for chronic kidney disease if they have hypertension, diabetes, clinically evident cardiovascular disease or a family history of kidney failure or are more than 60 years old.4 The Canadian Society of Nephrology published guidelines on the management of chronic kidney disease but did not offer guidance on screening.1 The Canadian Diabetes Association recommends annual screening with the use of an albumin:creatinine ratio,12 and the Canadian Hypertension Education Program guideline recommends urinalysis as part of the initial assessment of hypertension.13 Screening for chronic kidney disease on the basis of eGFR and albuminuria is not considered to be cost-effective in the general population, among older people or among people with hypertension.14The objective of our study was to use direct measures (biomarkers) of kidney function to generate nationally representative, population-based prevalence estimates of chronic kidney disease among Canadian adults overall and in clinically relevant groups.  相似文献   

4.

Background

The Aboriginal population in Canada experiences high rates of end-stage renal disease and need for dialytic therapies. Our objective was to examine rates of mortality, technique failure and peritonitis among adult aboriginal patients receiving peritoneal dialysis in the province of Manitoba. We also aimed to explore whether differences in these rates may be accounted for by location of residence (i.e., urban versus rural).

Methods

We included all adult patients residing in the province of Manitoba who received peritoneal dialysis during the period from 1997–2007 (n = 727). We extracted data from a local administrative database and from the Canadian Organ Replacement Registry and the Peritonitis Organism Exit-sites/Tunnel infections (POET) database. We used Cox and logistic regression models to determine the relationship between outcomes and Aboriginal ethnicity. We performed Kaplan–Meier analyses to examine the relationship between outcomes and urban (i.e., 50 km or less from the primary dialysis centre in Winnipeg) versus rural (i.e., more than 50 km from the centre) residency among patients who were aboriginal.

Results

One hundred sixty-one Aboriginal and 566 non-Aboriginal patients were included in the analyses. Adjusted hazard ratios for mortality (HR 1.476, CI 1.073–2.030) and adjusted time to peritonitis (HR 1.785, CI 1.352–2.357) were significantly higher among Aboriginal patients than among non-Aboriginal patients. We found no significant differences in mortality, technique failure or peritonitis between urban- or rural-residing Aboriginal patients.

Interpretation

Compared with non-Aboriginal patients receiving peritoneal dialysis, Aboriginal patients receiving peritoneal dialysis had higher mortality and faster time to peritonitis independent of comorbidities and demographic characteristics. This effect was not influenced by place of residence, whether rural or urban.The Canadian Aboriginal population suffers from a high burden of illness,1,2 low socio-economic status and geographic isolation.3 A high prevalence of diabetes mellitus, obesity and hypertension in this population is resulting in rapid growth in rates of kidney disease and renal failure (i.e., end-stage renal disease).46 The escalation in demand for dialytic services and care of patients with end-stage renal disease care will require appropriate planning and allocation of health care resources.Hemodialysis is resource-intensive and requires residence in proximity to a dialysis centre. In Canada, roughly 18% of all dialysis patients are receiving peritoneal dialysis.7 These patients are responsible for their own dialysis therapy and are seen periodically in an ambulatory clinic setting. No clear mortality-related benefit is associated with choice in modality of dialysis; each method has its own risks and benefits.810 Complications of peritoneal dialysis include technique failure, which often requires conversion to hemodialysis and relocation of the patient, and peritonitis.Dosage of peritoneal dialysis is determined by the combined clearance of solutes from the peritoneum (termed the peritoneal Kt/V) and, if applicable, by residual renal function (termed renal Kt/V). The peritoneal equilibration test is a marker of the peritoneal membranes solute transport characteristics and high peritoneal equilibration test values have been associated with inflammation, volume overload, technique failure and mortality.11Compared with non-Aboriginal patients who have end-stage renal disease, Aboriginal patients with end-stage renal disease are younger on average and more likely to reside in geographically remote locations.12 Use of home-based dialysis modalities, such as peritoneal dialysis, would be well suited to this population because it allows patients to continue to live in their communities. However, residing far from a dialysis centre or a patient’s primary nephrologist is associated with increased mortality, poor compliance and impaired quality of life.12,13 Previous studies have found that Aboriginal patients receiving peritoneal dialysis have similar mortality and rates of technique failure to patients of other ethnicities. But whether this is true in a contemporary cohort is not known.14,15Our objective was to examine differences in mortality and in rates of technique failure and peritonitis among Aboriginal patients versus non-Aboriginal patients receiving peritoneal dialysis and to explore whether differences may be accounted for by urban versus rural residence.  相似文献   

5.

Background:

Although Aboriginal adults have a higher risk of end-stage renal disease than non-Aboriginal adults, the incidence and causes of end-stage renal disease among Aboriginal children and young adults are not well described.

Methods:

We calculated age- and sex-specific incidences of end-stage renal disease among Aboriginal people less than 22 years of age using data from a national organ failure registry. Incidence rate ratios were used to compare rates between Aboriginal and white Canadians. To contrast causes of end-stage renal disease by ethnicity and age, we calculated the odds of congenital diseases, glomerulonephritis and diabetes for Aboriginal people and compared them with those for white people in the following age strata: 0 to less than 22 years, 22 to less than 40 years, 40 to less than 60 years and older than 60 years.

Results:

Incidence rate ratios of end-stage renal disease for Aboriginal children and young adults (age < 22 yr, v. white people) were 1.82 (95% confidence interval [CI] 1.40–2.38) for boys and 3.24 (95% CI 2.60–4.05) for girls. Compared with white people, congenital diseases were less common among Aboriginal people aged less than 22 years (odds ratio [OR] 0.56, 95% CI 0.36–0.86), and glomerulonephritis was more common (OR 2.18, 95% CI 1.55–3.07). An excess of glomerulonephritis, but not diabetes, was seen among Aboriginal people aged 22 to less than 40 years. The converse was true (higher risk of diabetes, lower risk of glomerulonephritis) among Aboriginal people aged 40 years and older.

Interpretation:

The incidence of end-stage renal disease is higher among Aboriginal children and young adults than among white children and young adults. This higher incidence may be driven by an increased risk of glomerulonephritis in this population.Compared with white Canadians, Aboriginal Canadians have a higher prevalence of end-stage renal disease,1,2 which is generally attributed to their increased risk for diabetes. However, there has been limited investigation of the incidence and causes of end-stage renal disease among Aboriginal children and young adults. Because most incident cases of diabetes are identified in middle-aged adults, an excess risk of end-stage renal disease in young people would not be expected if the high risk of diabetes is responsible for higher overall rates of end-stage renal disease among Aboriginal people. About 12.3% of children with end-stage renal disease in Canada are Aboriginal,3 but only 6.1% of Canadian children (age < 19 yr) are Aboriginal.4,5A few reports suggest that nondiabetic renal disease is common among Aboriginal populations in North America.2,68 Aboriginal adults in Saskatchewan are twice as likely as white adults to have end-stage renal disease caused by glomerulonephritis,7,8 and an increased rate of mesangial proliferative glomerulonephritis has been reported among Aboriginal people in the United States.6,9 These studies suggest that diabetes may be a comorbid condition rather than the sole cause of kidney failure among some Aboriginal people in whom diabetic nephropathy is diagnosed using clinical features alone.We estimated incidence rates of end-stage renal disease among Aboriginal children and young adults in Canada and compared them with the rates seen among white children and young adults. In addition, we compared relative odds of congenital renal disease, glomerulonephritis and diabetic nephropathy in Aboriginal people with the relative odds of these conditions in white people.  相似文献   

6.
7.

Background

The pathogenesis of appendicitis is unclear. We evaluated whether exposure to air pollution was associated with an increased incidence of appendicitis.

Methods

We identified 5191 adults who had been admitted to hospital with appendicitis between Apr. 1, 1999, and Dec. 31, 2006. The air pollutants studied were ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, and suspended particulate matter of less than 10 μ and less than 2.5 μ in diameter. We estimated the odds of appendicitis relative to short-term increases in concentrations of selected pollutants, alone and in combination, after controlling for temperature and relative humidity as well as the effects of age, sex and season.

Results

An increase in the interquartile range of the 5-day average of ozone was associated with appendicitis (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.03–1.25). In summer (July–August), the effects were most pronounced for ozone (OR 1.32, 95% CI 1.10–1.57), sulfur dioxide (OR 1.30, 95% CI 1.03–1.63), nitrogen dioxide (OR 1.76, 95% CI 1.20–2.58), carbon monoxide (OR 1.35, 95% CI 1.01–1.80) and particulate matter less than 10 μ in diameter (OR 1.20, 95% CI 1.05–1.38). We observed a significant effect of the air pollutants in the summer months among men but not among women (e.g., OR for increase in the 5-day average of nitrogen dioxide 2.05, 95% CI 1.21–3.47, among men and 1.48, 95% CI 0.85–2.59, among women). The double-pollutant model of exposure to ozone and nitrogen dioxide in the summer months was associated with attenuation of the effects of ozone (OR 1.22, 95% CI 1.01–1.48) and nitrogen dioxide (OR 1.48, 95% CI 0.97–2.24).

Interpretation

Our findings suggest that some cases of appendicitis may be triggered by short-term exposure to air pollution. If these findings are confirmed, measures to improve air quality may help to decrease rates of appendicitis.Appendicitis was introduced into the medical vernacular in 1886.1 Since then, the prevailing theory of its pathogenesis implicated an obstruction of the appendiceal orifice by a fecalith or lymphoid hyperplasia.2 However, this notion does not completely account for variations in incidence observed by age,3,4 sex,3,4 ethnic background,3,4 family history,5 temporal–spatial clustering6 and seasonality,3,4 nor does it completely explain the trends in incidence of appendicitis in developed and developing nations.3,7,8The incidence of appendicitis increased dramatically in industrialized nations in the 19th century and in the early part of the 20th century.1 Without explanation, it decreased in the middle and latter part of the 20th century.3 The decrease coincided with legislation to improve air quality. For example, after the United States Clean Air Act was passed in 1970,9 the incidence of appendicitis decreased by 14.6% from 1970 to 1984.3 Likewise, a 36% drop in incidence was reported in the United Kingdom between 1975 and 199410 after legislation was passed in 1956 and 1968 to improve air quality and in the 1970s to control industrial sources of air pollution. Furthermore, appendicitis is less common in developing nations; however, as these countries become more industrialized, the incidence of appendicitis has been increasing.7Air pollution is known to be a risk factor for multiple conditions, to exacerbate disease states and to increase all-cause mortality.11 It has a direct effect on pulmonary diseases such as asthma11 and on nonpulmonary diseases including myocardial infarction, stroke and cancer.1113 Inflammation induced by exposure to air pollution contributes to some adverse health effects.1417 Similar to the effects of air pollution, a proinflammatory response has been associated with appendicitis.1820We conducted a case–crossover study involving a population-based cohort of patients admitted to hospital with appendicitis to determine whether short-term increases in concentrations of selected air pollutants were associated with hospital admission because of appendicitis.  相似文献   

8.

Background:

The gut microbiota is essential to human health throughout life, yet the acquisition and development of this microbial community during infancy remains poorly understood. Meanwhile, there is increasing concern over rising rates of cesarean delivery and insufficient exclusive breastfeeding of infants in developed countries. In this article, we characterize the gut microbiota of healthy Canadian infants and describe the influence of cesarean delivery and formula feeding.

Methods:

We included a subset of 24 term infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. Mode of delivery was obtained from medical records, and mothers were asked to report on infant diet and medication use. Fecal samples were collected at 4 months of age, and we characterized the microbiota composition using high-throughput DNA sequencing.

Results:

We observed high variability in the profiles of fecal microbiota among the infants. The profiles were generally dominated by Actinobacteria (mainly the genus Bifidobacterium) and Firmicutes (with diverse representation from numerous genera). Compared with breastfed infants, formula-fed infants had increased richness of species, with overrepresentation of Clostridium difficile. Escherichia–Shigella and Bacteroides species were underrepresented in infants born by cesarean delivery. Infants born by elective cesarean delivery had particularly low bacterial richness and diversity.

Interpretation:

These findings advance our understanding of the gut microbiota in healthy infants. They also provide new evidence for the effects of delivery mode and infant diet as determinants of this essential microbial community in early life.The human body harbours trillions of microbes, known collectively as the “human microbiome.” By far the highest density of commensal bacteria is found in the digestive tract, where resident microbes outnumber host cells by at least 10 to 1. Gut bacteria play a fundamental role in human health by promoting intestinal homeostasis, stimulating development of the immune system, providing protection against pathogens, and contributing to the processing of nutrients and harvesting of energy.1,2 The disruption of the gut microbiota has been linked to an increasing number of diseases, including inflammatory bowel disease, necrotizing enterocolitis, diabetes, obesity, cancer, allergies and asthma.1 Despite this evidence and a growing appreciation for the integral role of the gut microbiota in lifelong health, relatively little is known about the acquisition and development of this complex microbial community during infancy.3Two of the best-studied determinants of the gut microbiota during infancy are mode of delivery and exposure to breast milk.4,5 Cesarean delivery perturbs normal colonization of the infant gut by preventing exposure to maternal microbes, whereas breastfeeding promotes a “healthy” gut microbiota by providing selective metabolic substrates for beneficial bacteria.3,5 Despite recommendations from the World Health Organization,6 the rate of cesarean delivery has continued to rise in developed countries and rates of breastfeeding decrease substantially within the first few months of life.7,8 In Canada, more than 1 in 4 newborns are born by cesarean delivery, and less than 15% of infants are exclusively breastfed for the recommended duration of 6 months.9,10 In some parts of the world, elective cesarean deliveries are performed by maternal request, often because of apprehension about pain during childbirth, and sometimes for patient–physician convenience.11The potential long-term consequences of decisions regarding mode of delivery and infant diet are not to be underestimated. Infants born by cesarean delivery are at increased risk of asthma, obesity and type 1 diabetes,12 whereas breastfeeding is variably protective against these and other disorders.13 These long-term health consequences may be partially attributable to disruption of the gut microbiota.12,14Historically, the gut microbiota has been studied with the use of culture-based methodologies to examine individual organisms. However, up to 80% of intestinal microbes cannot be grown in culture.3,15 New technology using culture-independent DNA sequencing enables comprehensive detection of intestinal microbes and permits simultaneous characterization of entire microbial communities. Multinational consortia have been established to characterize the “normal” adult microbiome using these exciting new methods;16 however, these methods have been underused in infant studies. Because early colonization may have long-lasting effects on health, infant studies are vital.3,4 Among the few studies of infant gut microbiota using DNA sequencing, most were conducted in restricted populations, such as infants delivered vaginally,17 infants born by cesarean delivery who were formula-fed18 or preterm infants with necrotizing enterocolitis.19Thus, the gut microbiota is essential to human health, yet the acquisition and development of this microbial community during infancy remains poorly understood.3 In the current study, we address this gap in knowledge using new sequencing technology and detailed exposure assessments20 of healthy Canadian infants selected from a national birth cohort to provide representative, comprehensive profiles of gut microbiota according to mode of delivery and infant diet.  相似文献   

9.
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear—to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.In principle, the erythropoietin receptor (EpoR) was discovered and described in red blood cell (RBC) progenitors, stimulating its proliferation and survival. Erythropoietin (Epo) is mainly synthesized in fetal liver and adult kidneys (13). Therefore, it was hypothesized that Epo act exclusively on erythroid progenitor cells. Accordingly, the target in humans for EpoR agonists drugs (such as recombinant erythropoietin [rhEpo], in general, called erythropoiesis-simulating agents) appears clear (that is, to treat anemia). However, evidence of a kaleidoscope of pleitropic actions of Epo has been provided (4,5). The Epo/EpoR axis research involved an initial journey from laboratory basic research to clinical therapeutics. However, as a consequence of clinical observations, basic research on Epo/EpoR comes back to expand its clinical therapeutic applicability.Although kidney and liver have long been considered the major sources of synthesis, Epo mRNA expression has also been detected in the brain (neurons and glial cells), lung, heart, bone marrow, spleen, hair follicles, reproductive tract and osteoblasts (617). Accordingly, EpoR was detected in other cells, such as neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells and cells of heart, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle (1827). Conversely, Sinclair et al.(28) reported data questioning the presence or function of EpoR on nonhematopoietic cells (endothelial, neuronal and cardiac cells), suggesting that further studies are needed to confirm the diversity of EpoR. Elliott et al.(29) also showed that EpoR is virtually undetectable in human renal cells and other tissues with no detectable EpoR on cell surfaces. These results have raised doubts about the preclinical basis for studies exploring pleiotropic actions of rhEpo (30).For the above-mentioned data, a return to basic research studies has become necessary, and many studies in animal models have been initiated or have already been performed. The effect of rhEpo administration on angiogenesis, myogenesis, shift in muscle fiber types and oxidative enzyme activities in skeletal muscle (4,31), cardiac muscle mitochondrial biogenesis (32), cognitive effects (31), antiapoptotic and antiinflammatory actions (3337) and plasma glucose concentrations (38) has been extensively studied. Neuro- and cardioprotection properties have been mainly described. Accordingly, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia).Unfortunately, the side effects of rhEpo are also evident. Epo is involved in regulating tumor angiogenesis (39) and probably in the survival and growth of tumor cells (25,40,41). rhEpo administration also induces serious side effects such as hypertension, polycythemia, myocardial infarction, stroke and seizures, platelet activation and increased thromboembolic risk, and immunogenicity (4246), with the most common being hypertension (47,48). A new generation of nonhematopoietic EpoR agonists drugs have hence been investigated and further developed in animals models. These compounds, namely asialoerythropoietin (asialoEpo) and carbamylated Epo (Cepo), were developed for preserving tissue-protective properties but reducing the erythropoietic activity of native Epo (49,50). These drugs will provide better outcome in ongoing clinical trials. The advantage of using nonhematopoietic Epo analogs is to avoid the stimulation of hematopoiesis and thereby the prevention of an increased hematocrit with a subsequent procoagulant status or increased blood pressure. In this regard, a new study by van Rijt et al. has shed new light on this topic (51). A new nonhematopoietic EpoR agonist analog named ARA 290 has been developed, promising cytoprotective capacities to prevent renal ischemia/reperfusion injury (51). ARA 290 is a short peptide that has shown no safety concerns in preclinical and human studies. In addition, ARA 290 has proven efficacious in cardiac disorders (52,53), neuropathic pain (54) and sarcoidosis-induced chronic neuropathic pain (55). Thus, ARA 290 is a novel nonhematopoietic EpoR agonist with promising therapeutic options in treating a wide range of pathologies and without increased risks of cardiovascular events.Overall, this new generation of EpoR agonists without the erythropoietic activity of Epo while preserving tissue-protective properties of Epo will provide better outcomes in ongoing clinical trials (49,50). Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases, such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.  相似文献   

10.
Background:Rates of imaging for low-back pain are high and are associated with increased health care costs and radiation exposure as well as potentially poorer patient outcomes. We conducted a systematic review to investigate the effectiveness of interventions aimed at reducing the use of imaging for low-back pain.Methods:We searched MEDLINE, Embase, CINAHL and the Cochrane Central Register of Controlled Trials from the earliest records to June 23, 2014. We included randomized controlled trials, controlled clinical trials and interrupted time series studies that assessed interventions designed to reduce the use of imaging in any clinical setting, including primary, emergency and specialist care. Two independent reviewers extracted data and assessed risk of bias. We used raw data on imaging rates to calculate summary statistics. Study heterogeneity prevented meta-analysis.Results:A total of 8500 records were identified through the literature search. Of the 54 potentially eligible studies reviewed in full, 7 were included in our review. Clinical decision support involving a modified referral form in a hospital setting reduced imaging by 36.8% (95% confidence interval [CI] 33.2% to 40.5%). Targeted reminders to primary care physicians of appropriate indications for imaging reduced referrals for imaging by 22.5% (95% CI 8.4% to 36.8%). Interventions that used practitioner audits and feedback, practitioner education or guideline dissemination did not significantly reduce imaging rates. Lack of power within some of the included studies resulted in lack of statistical significance despite potentially clinically important effects.Interpretation:Clinical decision support in a hospital setting and targeted reminders to primary care doctors were effective interventions in reducing the use of imaging for low-back pain. These are potentially low-cost interventions that would substantially decrease medical expenditures associated with the management of low-back pain.Current evidence-based clinical practice guidelines recommend against the routine use of imaging in patients presenting with low-back pain.13 Despite this, imaging rates remain high,4,5 which indicates poor concordance with these guidelines.6,7Unnecessary imaging for low-back pain has been associated with poorer patient outcomes, increased radiation exposure and higher health care costs.8 No short- or long-term clinical benefits have been shown with routine imaging of the low back, and the diagnostic value of incidental imaging findings remains uncertain.912 A 2008 systematic review found that imaging accounted for 7% of direct costs associated with low-back pain, which in 1998 translated to more than US$6 billion in the United States and £114 million in the United Kingdom.13 Current costs are likely to be substantially higher, with an estimated 65% increase in spine-related expenditures between 1997 and 2005.14Various interventions have been tried for reducing imaging rates among people with low-back pain. These include strategies targeted at the practitioner such as guideline dissemination,1517 education workshops,18,19 audit and feedback of imaging use,7,20,21 ongoing reminders7 and clinical decision support.2224 It is unclear which, if any, of these strategies are effective.25 We conducted a systematic review to investigate the effectiveness of interventions designed to reduce imaging rates for the management of low-back pain.  相似文献   

11.

Background

Little is known about the distribution of diagnoses that account for fatigue in patients in primary care. We evaluated the diagnoses established within 1 year after presentation with fatigue in primary care that were possibly associated with the fatigue.

Methods

We conducted a prospective observational cohort study with 1-year follow-up. We included adult patients who presented with a new episode of fatigue between June 2004 and January 2006. We extracted data on diagnoses during the follow-up period from the patients’ medical records as well as data on pre-existing chronic diseases.

Results

Of the 571 patients for whom diagnostic data were available, 268 (46.9%) had received one or more diagnoses that could be associated with fatigue. The diagnoses were diverse and mostly included symptom diagnoses, with main categories being musculoskeletal (19.4%) and psychological problems (16.5%). Clear somatic pathology was diagnosed in 47 (8.2%) of the patients. Most diagnoses were not made during the consultation when fatigue was presented.

Interpretation

Only a minority of patients were diagnosed with serious pathology. Half of the patients did not receive any diagnosis that could explain their fatigue. Nevertheless, because of the wide range of conditions and symptoms that may explain or co-occur with the fatigue, fatigue is a complex problem that deserves attention not only as a symptom of underlying specific disease.Fatigue is a common problem seen in primary care. It is reported as the main presenting symptom in 5% to 10% of patients.13 Both its nonspecific nature and its high prevalence make fatigue a challenging problem for general practitioners to manage. The symptom may indicate a wide range of conditions, including respiratory, cardiovascular, endocrine, gastrointestinal, hematologic, infectious, neurologic and musculoskeletal diseases, mood disorders, sleep disorders and cancer.413 Patients with a chronic disease often report symptoms of fatigue,14,15 and the prevalence of chronic disease is higher among patients presenting with fatigue than among other patients.16 Regardless of the underlying pathology, fatigue is a phenomenon with social, physiologic and psychological dimensions.1720Little is known about the distribution of diagnoses in populations of patients presenting with fatigue as a main symptom in primary care. A Dutch morbidity registration of episodes of care showed that fatigue was a symptom diagnosis in about 40% of patients.21 Previous studies involving patients presenting with fatigue as a main symptom either had small samples22,23 or reported diagnoses that were based on standardized laboratory testing at baseline.24,25 Because of the wide range of possible diagnoses, large observational studies are needed to determine the distribution of diagnoses in primary care.We carried out a prospective study involving patients in primary care practices in whom fatigue was the main presenting symptom. The aim of our study was to describe the distribution of diagnoses established within 1 year after presentation that were possibly associated with the fatigue.  相似文献   

12.
Luo JC  Leu HB  Huang KW  Huang CC  Hou MC  Lin HC  Lee FY  Lee SD 《CMAJ》2011,183(18):E1345-E1351

Background:

Few large population-based studies have compared the incidence of bleeding of gastroduodenal ulcers between patients with and without end-stage renal disease. We investigated the association between ulcer bleeding and end-stage renal disease in patients receiving hemodialysis, and we sought to identify risk factors for ulcer bleeding.

Methods:

We performed a nationwide seven-year population study using data from the National Health Insurance Research Database in Taiwan. We identified 36 474 patients with end-stage renal disease who were receiving hemodialysis, 6320 patients with chronic kidney disease and 36 034 controls matched for age, sex and medication use. We performed log-rank testing to analyze differences in survival time without ulcer bleeding among the three groups. We performed Cox proportional hazard regressions to evaluate the risk factors for ulcer bleeding among the three groups and to identify risk factors in patients receiving hemodialysis.

Results:

Patients receiving hemodialysis and those with chronic kidney disease had a significantly higher incidence of ulcer bleeding than controls had (p < 0.001). Hemodialysis (hazard ratio [HR] 5.24, 95% confidence interval [CI] 4.67–5.86) and chronic kidney disease (HR 1.95, 95% CI 1.62–2.35) were independently associated with an increased risk of ulcer bleeding. Diabetes mellitus, coronary artery disease, cirrhosis and use of nonsteroidal anti-inflammatory drugs were risk factors for ulcer bleeding in patients with end-stage renal disease who were receiving hemodialysis

Interpretation:

Patients with end-stage renal disease who are receiving hemodialysis had a high risk of ulcer bleeding. Diabetes mellitus, coronary artery disease, cirrhosis and the use of nonsteroidal anti-inflammatory drugs were important risk factors for ulcer bleeding in these patients.Taiwan has the highest incidence and prevalence of end-stage renal disease in the world.1 The approximately 40 000 patients with end-stage renal disease consume 7% (about NT$26 billion) of Taiwan’s health insurance budget for dialysis treatment, especially because 90% of these patients receive hemodialysis rather than peritoneal dialysis.2 In Western and Asian countries, previous studies have suggested that the prevalence of peptic ulcer disease among patients with end-stage renal disease is not higher than in the general population;35 however, recent reports show a higher prevalence among patients receiving long-term hemodialysis6,7 and a higher rate of bleeding after the development of ulcers in these patients.8The pathogenesis and risk factors for ulcers or ulcer bleeding in patients with end-stage renal disease are unclear.911 We performed a nationwide population-based cohort study to investigate the association between hemodialysis and bleeding of gastroduodeanl ulcers and to identify the risk factors for ulcer bleeding in patients with end-stage renal disease.  相似文献   

13.

Background:

Persistent postoperative pain continues to be an underrecognized complication. We examined the prevalence of and risk factors for this type of pain after cardiac surgery.

Methods:

We enrolled patients scheduled for coronary artery bypass grafting or valve replacement, or both, from Feb. 8, 2005, to Sept. 1, 2009. Validated measures were used to assess (a) preoperative anxiety and depression, tendency to catastrophize in the face of pain, health-related quality of life and presence of persistent pain; (b) pain intensity and interference in the first postoperative week; and (c) presence and intensity of persistent postoperative pain at 3, 6, 12 and 24 months after surgery. The primary outcome was the presence of persistent postoperative pain during 24 months of follow-up.

Results:

A total of 1247 patients completed the preoperative assessment. Follow-up retention rates at 3 and 24 months were 84% and 78%, respectively. The prevalence of persistent postoperative pain decreased significantly over time, from 40.1% at 3 months to 22.1% at 6 months, 16.5% at 12 months and 9.5% at 24 months; the pain was rated as moderate to severe in 3.6% at 24 months. Acute postoperative pain predicted both the presence and severity of persistent postoperative pain. The more intense the pain during the first week after surgery and the more it interfered with functioning, the more likely the patients were to report persistent postoperative pain. Pre-existing persistent pain and increased preoperative anxiety also predicted the presence of persistent postoperative pain.

Interpretation:

Persistent postoperative pain of nonanginal origin after cardiac surgery affected a substantial proportion of the study population. Future research is needed to determine whether interventions to modify certain risk factors, such as preoperative anxiety and the severity of pain before and immediately after surgery, may help to minimize or prevent persistent postoperative pain.Postoperative pain that persists beyond the normal time for tissue healing (> 3 mo) is increasingly recognized as an important complication after various types of surgery and can have serious consequences on patients’ daily living.13 Cardiac surgeries, such as coronary artery bypass grafting (CABG) and valve replacement, rank among the most frequently performed interventions worldwide.4 They aim to improve survival and quality of life by reducing symptoms, including anginal pain. However, persistent postoperative pain of nonanginal origin has been reported in 7% to 60% of patients following these surgeries.523 Such variability is common in other types of major surgery and is due mainly to differences in the definition of persistent postoperative pain, study design, data collection methods and duration of follow-up.13,24Few prospective cohort studies have examined the exact time course of persistent postoperative pain after cardiac surgery, and follow-up has always been limited to a year or less.9,14,25 Factors that put patients at risk of this type of problem are poorly understood.26 Studies have reported inconsistent results regarding the contribution of age, sex, body mass index, preoperative angina, surgical technique, grafting site, postoperative complications or level of opioid consumption after surgery.57,9,13,14,1619,2123,25,27 Only 1 study investigated the role of chronic nonanginal pain before surgery as a contributing factor;21 5 others prospectively assessed the association between persistent postoperative pain and acute pain intensity in the first postoperative week but reported conflicting results.13,14,21,22,25 All of the above studies were carried out in a single hospital and included relatively small samples. None of the studies examined the contribution of psychological factors such as levels of anxiety and depression before cardiac surgery, although these factors have been shown to influence acute or persistent postoperative pain in other types of surgery.1,24,28,29We conducted a prospective multicentre cohort study (the CARD-PAIN study) to determine the prevalence of persistent postoperative pain of nonanginal origin up to 24 months after cardiac surgery and to identify risk factors for the presence and severity of the condition.  相似文献   

14.
Schultz AS  Finegan B  Nykiforuk CI  Kvern MA 《CMAJ》2011,183(18):E1334-E1344

Background:

Many hospitals have adopted smoke-free policies on their property. We examined the consequences of such polices at two Canadian tertiary acute-care hospitals.

Methods:

We conducted a qualitative study using ethnographic techniques over a six-month period. Participants (n = 186) shared their perspectives on and experiences with tobacco dependence and managing the use of tobacco, as well as their impressions of the smoke-free policy. We interviewed inpatients individually from eight wards (n = 82), key policy-makers (n = 9) and support staff (n = 14) and held 16 focus groups with health care providers and ward staff (n = 81). We also reviewed ward documents relating to tobacco dependence and looked at smoking-related activities on hospital property.

Results:

Noncompliance with the policy and exposure to secondhand smoke were ongoing concerns. Peoples’ impressions of the use of tobacco varied, including divergent opinions as to whether such use was a bad habit or an addiction. Treatment for tobacco dependence and the management of symptoms of withdrawal were offered inconsistently. Participants voiced concerns over patient safety and leaving the ward to smoke.

Interpretation:

Policies mandating smoke-free hospital property have important consequences beyond noncompliance, including concerns over patient safety and disruptions to care. Without adequately available and accessible support for withdrawal from tobacco, patients will continue to face personal risk when they leave hospital property to smoke.Canadian cities and provinces have passed smoking bans with the goal of reducing people’s exposure to secondhand smoke in workplaces, public spaces and on the property adjacent to public buildings.1,2 In response, Canadian health authorities and hospitals began implementing policies mandating smoke-free hospital property, with the goals of reducing the exposure of workers, patients and visitors to tobacco smoke while delivering a public health message about the dangers of smoking.25 An additional anticipated outcome was the reduced use of tobacco among patients and staff. The impetuses for adopting smoke-free policies include public support for such legislation and the potential for litigation for exposure to second-hand smoke.2,4Tobacco use is a modifiable risk factor associated with a variety of cancers, cardiovascular diseases and respiratory conditions.611 Patients in hospital who use tobacco tend to have more surgical complications and exacerbations of acute and chronic health conditions than patients who do not use tobacco.611 Any policy aimed at reducing exposure to tobacco in hospitals is well supported by evidence, as is the integration of interventions targetting tobacco dependence.12 Unfortunately, most of the nearly five million Canadians who smoke will receive suboptimal treatment,13 as the routine provision of interventions for tobacco dependence in hospital settings is not a practice norm.1416 In smoke-free hospitals, two studies suggest minimal support is offered for withdrawal, 17,18 and one reports an increased use of nicotine-replacement therapy after the implementation of the smoke-free policy.19Assessments of the effectiveness of smoke-free policies for hospital property tend to focus on noncompliance and related issues of enforcement.17,20,21 Although evidence of noncompliance and litter on hospital property2,17,20 implies ongoing exposure to tobacco smoke, half of the participating hospital sites in one study reported less exposure to tobacco smoke within hospital buildings and on the property.18 In addition, there is evidence to suggest some decline in smoking among staff.18,19,21,22We sought to determine the consequences of policies mandating smoke-free hospital property in two Canadian acute-care hospitals by eliciting lived experiences of the people faced with enacting the policies: patients and health care providers. In addition, we elicited stories from hospital support staff and administrators regarding the policies.  相似文献   

15.

Introduction:

Pregnancy causes diverse physiologic and lifestyle changes that may contribute to increased driving and driving error. We compared the risk of a serious motor vehicle crash during the second trimester to the baseline risk before pregnancy.

Methods:

We conducted a population-based self-matched longitudinal cohort analysis of women who gave birth in Ontario between April 1, 2006, and March 31, 2011. We excluded women less than age 18 years, those living outside Ontario, those who lacked a valid health card identifier under universal insurance, and those under the care of a midwife. The primary outcome was a motor vehicle crash resulting in a visit to an emergency department.

Results:

A total of 507 262 women gave birth during the study period. These women accounted for 6922 motor vehicle crashes as drivers during the 3-year baseline interval (177 per mo) and 757 motor vehicle crashes as drivers during the second trimester (252 per mo), equivalent to a 42% relative increase (95% confidence interval 32%–53%; p < 0.001). The increased risk extended to diverse populations, varied obstetrical cases and different crash characteristics. The increased risk was largest in the early second trimester and compensated for by the third trimester. No similar increase was observed in crashes as passengers or pedestrians, cases of intentional injury or inadvertent falls, or self-reported risky behaviours.

Interpretation:

Pregnancy is associated with a substantial risk of a serious motor vehicle crash during the second trimester. This risk merits attention for prenatal care.Motor vehicle crashes are the leading cause of fetal death related to maternal trauma.14 The outcomes for survivors are also concerning, given that brain injury in early life can contribute to neurologic deficits in later life.5 Emergency care of an injured pregnant woman is further problematic because the physiologic changes of pregnancy can mask the usual signs of acute blood loss (e.g., tachycardia, hypotension), resuscitation science is incomplete (e.g., clinical trials usually exclude pregnant women) and trauma protocols need adjustment (e.g., iodine contrast radiography can potentially harm a fetus).4,5 Even rudimentary care such as analgesia can be complicated when a pregnant woman is involved.6 Every crash creates worry and potential future litigation that might have been avoided if the crash had been prevented.7,8Motor vehicle crashes occur when human error aligns with system failures.9,10 In the United States, the net effect is about 15 million crashes annually, resulting in about 2.5 million individuals sent to hospital with fractures, concussions, ruptured vessels, organ lacerations, soft tissue damage or other injuries.11 The specific details of common human errors are not well understood; in contrast, life-threatening defects in the vehicle or roadway are relatively blatant and infrequent.12 One pattern of human error is that people are overly confident, misjudge their abilities and fail to take protective actions.13 The shared nature of many motor vehicle crashes also makes it easy to blame the other person involved and fail to learn from past experience.14We questioned whether pregnancy might interact with human error and increase the risk of a serious motor vehicle crash. Intermittent nausea, general fatigue, unintended distraction and sleep disruption are common features of a normal pregnancy that sometimes underlie human error.1517 Important physiologic changes related to pregnancy can occur before overt changes in anatomy are apparent.18 Hence, the intermediate stages of pregnancy provide a potential interval of overconfidence when a person could be compromised yet still active.19 The aim of our study was to examine the risk of a serious motor vehicle crash during pregnancy with special attention to the first, second and third trimesters separately.  相似文献   

16.

Background

Fractures have largely been assessed by their impact on quality of life or health care costs. We conducted this study to evaluate the relation between fractures and mortality.

Methods

A total of 7753 randomly selected people (2187 men and 5566 women) aged 50 years and older from across Canada participated in a 5-year observational cohort study. Incident fractures were identified on the basis of validated self-report and were classified by type (vertebral, pelvic, forearm or wrist, rib, hip and “other”). We subdivided fracture groups by the year in which the fracture occurred during follow-up; those occurring in the fourth and fifth years were grouped together. We examined the relation between the time of the incident fracture and death.

Results

Compared with participants who had no fracture during follow-up, those who had a vertebral fracture in the second year were at increased risk of death (adjusted hazard ratio [HR] 2.7, 95% confidence interval [CI] 1.1–6.6); also at risk were those who had a hip fracture during the first year (adjusted HR 3.2, 95% CI 1.4–7.4). Among women, the risk of death was increased for those with a vertebral fracture during the first year (adjusted HR 3.7, 95% CI 1.1–12.8) or the second year of follow-up (adjusted HR 3.2, 95% CI 1.2–8.1). The risk of death was also increased among women with hip fracture during the first year of follow-up (adjusted HR 3.0, 95% CI 1.0–8.7).

Interpretation

Vertebral and hip fractures are associated with an increased risk of death. Interventions that reduce the incidence of these fractures need to be implemented to improve survival.Osteoporosis-related fractures are a major health concern, affecting a growing number of individuals worldwide. The burden of fracture has largely been assessed by the impact on health-related quality of life and health care costs.1,2 Fractures can also be associated with death. However, trials that have examined the relation between fractures and mortality have had limitations that may influence their results and the generalizability of the studies, including small samples,3,4 the examination of only 1 type of fracture,410 the inclusion of only women,8,11 the enrolment of participants from specific areas (i.e., hospitals or certain geographic regions),3,4,7,8,10,12 the nonrandom selection of participants311 and the lack of statistical adjustment for confounding factors that may influence mortality.3,57,12We evaluated the relation between incident fractures and mortality over a 5-year period in a cohort of men and women 50 years of age and older. In addition, we examined whether other characteristics of participants were risk factors for death.  相似文献   

17.
18.

Background:

Brief interventions delivered by family physicians to address excessive alcohol use among adult patients are effective. We conducted a study to determine whether such an intervention would be similarly effective in reducing binge drinking and excessive cannabis use among young people.

Methods:

We conducted a cluster randomized controlled trial involving 33 family physicians in Switzerland. Physicians in the intervention group received training in delivering a brief intervention to young people during the consultation in addition to usual care. Physicians in the control group delivered usual care only. Consecutive patients aged 15–24 years were recruited from each practice and, before the consultation, completed a confidential questionnaire about their general health and substance use. Patients were followed up at 3, 6 and 12 months after the consultation. The primary outcome measure was self-reported excessive substance use (≥ 1 episode of binge drinking, or ≥ 1 joint of cannabis per week, or both) in the past 30 days.

Results:

Of the 33 participating physicians, 17 were randomly allocated to the intervention group and 16 to the control group. Of the 594 participating patients, 279 (47.0%) identified themselves as binge drinkers or excessive cannabis users, or both, at baseline. Excessive substance use did not differ significantly between patients whose physicians were in the intervention group and those whose physicians were in the control group at any of the follow-up points (odds ratio [OR] and 95% confidence interval [CI] at 3 months: 0.9 [0.6–1.4]; at 6 mo: 1.0 [0.6–1.6]; and at 12 mo: 1.1 [0.7–1.8]). The differences between groups were also nonsignificant after we re stricted the analysis to patients who reported excessive substance use at baseline (OR 1.6, 95% CI 0.9–2.8, at 3 mo; OR 1.7, 95% CI 0.9–3.2, at 6 mo; and OR 1.9, 95% CI 0.9–4.0, at 12 mo).

Interpretation:

Training family physicians to use a brief intervention to address excessive substance use among young people was not effective in reducing binge drinking and excessive cannabis use in this patient population. Trial registration: Australian New Zealand Clinical Trials Registry, no. ACTRN12608000432314.Most health-compromising behaviours begin in adolescence.1 Interventions to address these behaviours early are likely to bring long-lasting benefits.2 Harmful use of alcohol is a leading factor associated with premature death and disability worldwide, with a disproportionally high impact on young people (aged 10–24 yr).3,4 Similarly, early cannabis use can have adverse consequences that extend into adulthood.58In adolescence and early adulthood, binge drinking on at least a monthly basis is associated with an increased risk of adverse outcomes later in life.912 Although any cannabis use is potentially harmful, weekly use represents a threshold in adolescence related to an increased risk of cannabis (and tobacco) dependence in adulthood.13 Binge drinking affects 30%–50% and excessive cannabis use about 10% of the adolescent and young adult population in Europe and the United States.10,14,15Reducing substance-related harm involves multisectoral approaches, including promotion of healthy child and adolescent development, regulatory policies and early treatment interventions.16 Family physicians can add to the public health messages by personalizing their content within brief interventions.17,18 There is evidence that brief interventions can encourage young people to reduce substance use, yet most studies have been conducted in community settings (mainly educational), emergency services or specialized addiction clinics.1,16 Studies aimed at adult populations have shown favourable effects of brief alcohol interventions, and to some extent brief cannabis interventions, in primary care.1922 These interventions have been recommended for adolescent populations.4,5,16 Yet young people have different modes of substance use and communication styles that may limit the extent to which evidence from adult studies can apply to them.Recently, a systematic review of brief interventions to reduce alcohol use in adolescents identified only 1 randomized controlled trial in primary care.23 The tested intervention, not provided by family physicians but involving audio self-assessment, was ineffective in reducing alcohol use in exposed adolescents.24 Sanci and colleagues showed that training family physicians to address health-risk behaviours among adolescents was effective in improving provider performance, but the extent to which this translates into improved outcomes remains unknown.25,26 Two nonrandomized studies suggested screening for substance use and brief advice by family physicians could favour reduced alcohol and cannabis use among adolescents,27,28 but evidence from randomized trials is lacking.29We conducted the PRISM-Ado (Primary care Intervention Addressing Substance Misuse in Adolescents) trial, a cluster randomized controlled trial of the effectiveness of training family physicians to deliver a brief intervention to address binge drinking and excessive cannabis use among young people.  相似文献   

19.

Background:

Greater awareness of sleep-disordered breathing and rising obesity rates have fueled demand for sleep studies. Sleep testing using level 3 portable devices may expedite diagnosis and reduce the costs associated with level 1 in-laboratory polysomnography. We sought to assess the diagnostic accuracy of level 3 testing compared with level 1 testing and to identify the appropriate patient population for each test.

Methods:

We conducted a systematic review and meta-analysis of comparative studies of level 3 versus level 1 sleep tests in adults with suspected sleep-disordered breathing. We searched 3 research databases and grey literature sources for studies that reported on diagnostic accuracy parameters or disease management after diagnosis. Two reviewers screened the search results, selected potentially relevant studies and extracted data. We used a bivariate mixed-effects binary regression model to estimate summary diagnostic accuracy parameters.

Results:

We included 59 studies involving a total of 5026 evaluable patients (mostly patients suspected of having obstructive sleep apnea). Of these, 19 studies were included in the meta-analysis. The estimated area under the receiver operating characteristics curve was high, ranging between 0.85 and 0.99 across different levels of disease severity. Summary sensitivity ranged between 0.79 and 0.97, and summary specificity ranged between 0.60 and 0.93 across different apnea–hypopnea cut-offs. We saw no significant difference in the clinical management parameters between patients who underwent either test to receive their diagnosis.

Interpretation:

Level 3 portable devices showed good diagnostic performance compared with level 1 sleep tests in adult patients with a high pretest probability of moderate to severe obstructive sleep apnea and no unstable comorbidities. For patients suspected of having other types of sleep-disordered breathing or sleep disorders not related to breathing, level 1 testing remains the reference standard.Undiagnosed sleep-disordered breathing places a substantial burden on patients, families, health care systems and society.1 Sleep fragmentation and recurrent hypoxemia cause daytime sleepiness and impaired concentration, which increase the risk of motor vehicle collisions and occupational accidents.27 In addition, sleep-disordered breathing is associated with hypertension, stroke, cardiovascular disease, obesity and type 2 diabetes,812 all of which involve greater use of health care resources.1317Obstructive sleep apnea is the most common type of sleep-disordered breathing. Narrowing of the upper airway during inspiration results in episodes of apnea (breathing cessation for at least 10 seconds), hypopnea (reduced airflow), oxygen desaturation and arousal from sleep due to respiratory effort.18 Clinical signs and symptoms include snoring, reports of nocturnal apnea, gasping or choking witnessed by a partner, daytime sleepiness, morning headaches and inability to concentrate. Patients with obesity or cardiovascular disease are at increased risk.19The severity of obstructive sleep apnea is usually graded using the apnea–hypopnea index (the mean number of apneas and hypopneas per hour of sleep) as follows: mild (5–14), moderate (15–29) and severe (≥ 30).18,20Other, less common types of sleep-disordered breathing include upper airway resistance syndrome, obesity hyperventilation syndrome, central sleep apnea, and nocturnal hypoventilation/hypoxemia secondary to cardiopulmonary or neuromuscular disease. It is not uncommon for patients to have more than 1 type of sleep-disordered breathing.Estimates of the prevalence of sleep-disordered breathing vary depending on the population (e.g., by sex, age and comorbidities).21 According to the Wisconsin Sleep Cohort Study, values in American adults (aged 30–60 yr) are 24% for men and 9% for women.1 A Canadian survey found a self-reported prevalence of sleep apnea of 3% among adults more than 18 years of age, and 5% among those more than 45 years of age.22 As the population ages and rates of obesity increase, the prevalence of sleep-disordered breathing is climbing.1,19,23,24 Given its clinical implications, accurate diagnosis and treatment of the condition are critical.Level 1 sleep testing, or polysomnography, requires an overnight stay in a sleep laboratory with a technician in attendance. It captures a minimum of 7 channels of data (but typically ≥ 16), including respiratory, cardiovascular and neurologic parameters, to produce a comprehensive picture of sleep architecture. Level 1 is considered the reference standard for diagnosing all types of sleep-disordered breathing and sleep disorders.19,2527 However, limited facilities and the growing demand for sleep studies have resulted in long wait times.28 Level 2 sleep testing uses level 1 equipment, but is performed without a technician in attendance.Level 3 testing uses portable monitors that allow sleep studies to be done at the patient’s home or elsewhere. This option was introduced as a more accessible and less expensive alternative to in-laboratory polysomnography. Level 3 devices record at least 3 channels of data (e.g., oximetry, airflow, respiratory effort). Unlike level 1, level 3 testing cannot measure the duration of sleep, the number of arousals or sleep stages, nor can it detect nonrespiratory sleep disorders.27,29 Level 4 devices are also portable, but they capture less data — usually only 1 or 2 channels.27,30We conducted a systematic review and meta-analysis to compare the diagnostic accuracy of the widely used level 3 portable monitors to in-laboratory polysomnography, and to determine the subpopulations of patients whose conditions might be most appropriately diagnosed with each test.  相似文献   

20.

Background

Chest pain can be caused by various conditions, with life-threatening cardiac disease being of greatest concern. Prediction scores to rule out coronary artery disease have been developed for use in emergency settings. We developed and validated a simple prediction rule for use in primary care.

Methods

We conducted a cross-sectional diagnostic study in 74 primary care practices in Germany. Primary care physicians recruited all consecutive patients who presented with chest pain (n = 1249) and recorded symptoms and findings for each patient (derivation cohort). An independent expert panel reviewed follow-up data obtained at six weeks and six months on symptoms, investigations, hospital admissions and medications to determine the presence or absence of coronary artery disease. Adjusted odds ratios of relevant variables were used to develop a prediction rule. We calculated measures of diagnostic accuracy for different cut-off values for the prediction scores using data derived from another prospective primary care study (validation cohort).

Results

The prediction rule contained five determinants (age/sex, known vascular disease, patient assumes pain is of cardiac origin, pain is worse during exercise, and pain is not reproducible by palpation), with the score ranging from 0 to 5 points. The area under the curve (receiver operating characteristic curve) was 0.87 (95% confidence interval [CI] 0.83–0.91) for the derivation cohort and 0.90 (95% CI 0.87–0.93) for the validation cohort. The best overall discrimination was with a cut-off value of 3 (positive result 3–5 points; negative result ≤ 2 points), which had a sensitivity of 87.1% (95% CI 79.9%–94.2%) and a specificity of 80.8% (77.6%–83.9%).

Interpretation

The prediction rule for coronary artery disease in primary care proved to be robust in the validation cohort. It can help to rule out coronary artery disease in patients presenting with chest pain in primary care.Chest pain is common. Studies have shown a lifetime prevalence of 20% to 40% in the general population.1 Its prevalence in primary care ranges from 0.7% to 2.7% depending on inclusion criteria and country,24 with coronary artery disease being the underlying cause in about 12% of primary care patients.1,5 General practitioners are challenged to identify serious cardiac disease reliably and also protect patients from unnecessary investigations and hospital admissions. Because electrocardiography and the cardiac troponin test are of limited value in primary care,6,7 history taking and physical examination remain the main diagnostic tools.Most published studies on the diagnostic accuracy of signs and symptoms for acute coronary events have been conducted in high-prevalence settings such as hospital emergency departments.810 Predictive scores have also been developed for use in emergency departments, mainly for the diagnosis of acute coronary syndromes.1113 To what degree these apply in primary care is unknown.1416A clinical prediction score to rule out coronary artery disease in general practice has been developed.17 However, it did not perform well when validated externally. The aim of our study was to develop a simple, valid and usable prediction score based on signs and symptoms to help primary care physicians rule out coronary artery disease in patients presenting with chest pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号