首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Region of Flo1 Proteins Responsible for Sugar Recognition   总被引:13,自引:0,他引:13       下载免费PDF全文
Yeast flocculation is a phenomenon which is believed to result from an interaction between a lectin-like protein and a mannose chain located on the yeast cell surface. The FLO1 gene, which encodes a cell wall protein, is considered to play an important role in yeast flocculation, which is inhibited by mannose but not by glucose (mannose-specific flocculation). A new homologue of FLO1, named Lg-FLO1, was isolated from a flocculent bottom-fermenting yeast strain in which flocculation is inhibited by both mannose and glucose (mannose/glucose-specific flocculation). In order to confirm that both FLO1 and Lg-FLO1 are involved in the yeast flocculation phenomenon, the FLO1 gene in the mannose-specific flocculation strain was replaced by the Lg-FLO1 gene. The transformant in which the Lg-FLO1 gene was incorporated showed the same flocculation phenotype as the mannose/glucose-specific flocculation strain, suggesting that the FLO1 and Lg-FLO1 genes encode mannose-specific and mannose/glucose-specific lectin-like proteins, respectively. Moreover, the sugar recognition sites for these sugars were identified by expressing chimeric FLO1 and Lg-FLO1 genes. It was found that the region from amino acid 196 to amino acid 240 of both gene products is important for flocculation phenotypes. Further mutational analysis of this region suggested that Thr-202 in the Lg-Flo1 protein and Trp-228 in the Flo1 protein are involved in sugar recognition.  相似文献   

2.
3.
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.  相似文献   

4.
5.
Pyrethroid resistance in Anopheles funestus is threatening malaria control in Africa. Elucidation of underlying resistance mechanisms is crucial to improve the success of future control programs. A positional cloning approach was used to identify genes conferring resistance in the uncharacterised rp2 quantitative trait locus (QTL) previously detected in this vector using F6 advanced intercross lines (AIL). A 113 kb BAC clone spanning rp2 was identified and sequenced revealing a cluster of 15 P450 genes and one salivary protein gene (SG7-2). Contrary to A. gambiae, AfCYP6M1 is triplicated in A. funestus, while AgCYP6Z2 orthologue is absent. Five hundred and sixty-five new single nucleotide polymorphisms (SNPs) were identified for genetic mapping from rp2 P450s and other genes revealing high genetic polymorphisms with one SNP every 36 bp. A significant genotype/phenotype association was detected for rp2 P450s but not for a cluster of cuticular protein genes previously associated with resistance in A. gambiae. QTL mapping using F6 AIL confirms the rp2 QTL with an increase logarithm of odds score of 5. Multiplex gene expression profiling of 15 P450s and other genes around rp2 followed by individual validation using qRT–PCR indicated a significant overexpression in the resistant FUMOZ-R strain of the P450s AfCYP6Z1, AfCYP6Z3, AfCYP6M7 and the glutathione-s-transferase GSTe2 with respective fold change of 11.2, 6.3, 5.5 and 2.8. Polymorphisms analysis of AfCYP6Z1 and AfCYP6Z3 identified amino acid changes potentially associated with resistance further indicating that these genes are controlling the pyrethroid resistance explained by the rp2 QTL. The characterisation of this rp2 QTL significantly improves our understanding of resistance mechanisms in A. funestus.  相似文献   

6.
7.
A range of heavy metals are required for normal cell function and homeostasis. However, the anthropogenic release of metal compounds into soil and water sources presents a pervasive health threat. Copper is one of many heavy metals that negatively impacts diverse organisms at a global scale. Using a combination of quantitative trait locus (QTL) mapping and RNA sequencing in the Drosophila Synthetic Population Resource, we demonstrate that resistance to the toxic effects of ingested copper in D. melanogaster is genetically complex and influenced by allelic and expression variation at multiple loci. QTL mapping identified several QTL that account for a substantial fraction of heritability. Additionally, we find that copper resistance is impacted by variation in behavioral avoidance of copper and may be subject to life-stage specific regulation. Gene expression analysis further demonstrated that resistant and sensitive strains are characterized by unique expression patterns. Several of the candidate genes identified via QTL mapping and RNAseq have known copper-specific functions (e.g., Ccs, Sod3, CG11825), and others are involved in the regulation of other heavy metals (e.g., Catsup, whd). We validated several of these candidate genes with RNAi suggesting they contribute to variation in adult copper resistance. Our study illuminates the interconnected roles that allelic and expression variation, organism life stage, and behavior play in copper resistance, allowing a deeper understanding of the diverse mechanisms through which metal pollution can negatively impact organisms.  相似文献   

8.
The present work reviews and critically discusses the aspects that influence yeast flocculation, namely the chemical characteristics of the medium (pH and the presence of bivalent ions), fermentation conditions (oxygen, sugars, growth temperature and ethanol concentration) and the expression of specific genes such as FLO1, Lg‐FLO1, FLO5, FLO8, FLO9 and FLO10. In addition, the metabolic control of loss and onset of flocculation is reviewed and updated. Flocculation has been traditionally used in brewing production as an easy and off‐cost cell‐broth separation process. The advantages of using flocculent yeast strains in the production of other alcoholic beverages (wine, cachaça and sparkling wine), in the production of renewal fuels (bio‐ethanol), in modern biotechnology (production of heterologous proteins) and in environmental applications (bioremediation of heavy metals) are highlighted. Finally, the possibility of aggregation of yeast cells in flocs, as an example of social behaviour (a communitarian strategy for long‐time survival or a means of protection against negative environmental conditions), is discussed.  相似文献   

9.
Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution.  相似文献   

10.
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.  相似文献   

11.
12.
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants.  相似文献   

13.
14.
15.
C E Edwards  C Weinig 《Heredity》2011,106(4):661-677
Within organisms, groups of traits with different functions are frequently modular, such that variation among modules is independent and variation within modules is tightly integrated, or correlated. Here, we investigated patterns of trait integration and modularity in Brassica rapa in response to three simulated seasonal temperature/photoperiod conditions. The goals of this research were to use trait correlations to understand patterns of trait integration and modularity within and among floral, vegetative and phenological traits of B. rapa in each of three treatments, to examine the QTL architecture underlying patterns of trait integration and modularity, and to quantify how variation in temperature and photoperiod affects the correlation structure and QTL architecture of traits. All floral organs of B. rapa were strongly correlated, and contrary to expectations, floral and vegetative traits were also correlated. Extensive QTL co-localization suggests that covariation of these traits is likely due to pleiotropy, although physically linked loci that independently affect individual traits cannot be ruled out. Across treatments, the structure of genotypic and QTL correlations was generally conserved. Any observed variation in genetic architecture arose from genotype × environment interactions (GEIs) and attendant QTL × E in response to temperature but not photoperiod.  相似文献   

16.
Starch pasting viscosity is an important quality trait in cassava (Manihot esculenta Crantz) cultivars. The aim here was to identify loci and candidate genes associated with the starch pasting viscosity. Quantitative trait loci (QTL) mapping for seven pasting viscosity parameters was carried out using 100 lines of an F1 mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee. Starch samples were obtained from roots of cassava grown in 2008 and 2009 at Rayong, and in 2009 at Lop Buri province, Thailand. The traits showed continuous distribution among the F1 progeny with transgressive variation. Fifteen QTL were identified from mean trait data, with Logarithm of Odds (LOD) values from 2.77–13.01 and phenotype variations explained (PVE) from10.0–48.4%. In addition, 48 QTL were identified in separate environments. The LOD values ranged from 2.55–8.68 and explained 6.6–43.7% of phenotype variation. The loci were located on 19 linkage groups. The most important QTL for pasting temperature (PT) (qPT.1LG1) from mean trait values showed largest effect with highest LOD value (13.01) and PVE (48.4%). The QTL co‐localised with PT and pasting time (PTi) loci that were identified in separate environments. Candidate genes were identified within the QTL peak regions. However, the major genes of interest, encoding the family of glycosyl or glucosyl transferases and hydrolases, were located at the periphery of QTL peaks. The loci identified could be effectively applied in breeding programmes to improve cassava starch quality. Alleles of candidate genes should be further studied in order to better understand their effects on starch quality traits.  相似文献   

17.
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.  相似文献   

18.
Automated image acquisition, a custom analysis algorithm, and a distributed computing resource were used to add time as a third dimension to a quantitative trait locus (QTL) map for plant root gravitropism, a model growth response to an environmental cue. Digital images of Arabidopsis thaliana seedling roots from two independently reared sets of 162 recombinant inbred lines (RILs) and one set of 92 near isogenic lines (NILs) derived from a Cape Verde Islands (Cvi) × Landsberg erecta (Ler) cross were collected automatically every 2 min for 8 hr following induction of gravitropism by 90° reorientation of the sample. High-throughput computing (HTC) was used to measure root tip angle in each of the 1.1 million images acquired and perform statistical regression of tip angle against the genotype at each of the 234 RIL or 102 NIL DNA markers independently at each time point using a standard stepwise procedure. Time-dependent QTL were detected on chromosomes 1, 3, and 4 by this mapping method and by an approach developed to treat the phenotype time course as a function-valued trait. The QTL on chromosome 4 was earliest, appearing at 0.5 hr and remaining significant for 5 hr, while the QTL on chromosome 1 appeared at 3 hr and thereafter remained significant. The Cvi allele generally had a negative effect of 2.6–4.0%. Heritability due to the QTL approached 25%. This study shows how computer vision and statistical genetic analysis by HTC can characterize the developmental timing of genetic architectures.  相似文献   

19.
Understanding the organization and evolution of social complexity is a major task because it requires building an understanding of mechanisms operating at different levels of biological organization from genes to social interactions. I discuss here, a unique forward genetic approach spanning more than 30 years beginning with human-assisted colony-level selection for a single social trait, the amount of pollen honey bees (Apis mellifera L.) store. The goal was to understand a complex social trait from the social phenotype to genes responsible for observed trait variation. The approach combined the results of colony-level selection with detailed studies of individual behavior and physiology resulting in a mapped, integrated phenotypic architecture composed of correlative relationships between traits spanning anatomy, physiology, sensory response systems, and individual behavior that affect individual foraging decisions. Colony-level selection reverse engineered the architecture of an integrated phenotype of individuals resulting in changes in the social trait. Quantitative trait locus (QTL) studies combined with an exceptionally high recombination rate (60 kb/cM), and a phenotypic map, provided a genotype–phenotype map of high complexity demonstrating broad QTL pleiotropy, epistasis, and epistatic pleiotropy suggesting that gene pleiotropy or tight linkage of genes within QTL integrated the phenotype. Gene expression and knockdown of identified positional candidates revealed genes affecting foraging behavior and confirmed one pleiotropic gene, a tyramine receptor, as a target for colony-level selection that was under selection in two different tissues in two different life stages. The approach presented here has resulted in a comprehensive understanding of the structure and evolution of honey bee social organization.  相似文献   

20.
Ding G  Zhao Z  Liao Y  Hu Y  Shi L  Long Y  Xu F 《Annals of botany》2012,109(4):747-759

Background and Aims

One of the key targets of breeding programmes in rapeseed (Brassica napus) is to develop high-yield varieties. However, the lack of available phosphorus (P) in soils seriously limits rapeseed production. The aim of this study was to dissect the genetic control of seed yield and yield-related traits in B. napus grown with contrasting P supplies.

Methods

Two-year field trials were conducted at one site with normal and low P treatments using a population of 124 recombinant inbred lines derived from a cross between ‘B104-2’ and ‘Eyou Changjia’. Seed yield, seed weight, seed number, pod number, plant height, branch number and P efficiency coefficient (PEC) were investigated. Quantitative trait locus (QTL) analysis was performed by composite interval mapping.

Key Results

The phenotypic values of most of the tested traits were reduced under the low P conditions. In total, 74 putative QTLs were identified, contributing 7·3–25·4 % of the phenotypic variation. Of these QTLs, 16 (21·6 %) were detected in two seasons and in the mean value of two seasons, and eight QTLs for two traits were conserved across P levels. Low-P-specific QTLs were clustered on chromosomes A1, A6 and A8. By comparative mapping between Arabidopsis and B. napus, 161 orthologues of 146 genes involved in Arabidopsis P homeostasis and/or yield-related trait control were associated with 45 QTLs corresponding to 23 chromosomal regions. Four gene-based markers developed from genes involved in Arabidopsis P homeostasis were mapped to QTL intervals.

Conclusions

Different genetic determinants were involved in controlling seed yield and yield-related traits in B. napus under normal and low P conditions. The QTLs detected under reduced P supply may provide useful information for improving the seed yield of B. napus in soils with low P availability in marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号