首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium''s integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter−1 or 100 μg liter−1. Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter−1, the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter−1 linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter−1 linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations.  相似文献   

2.
Linuron-mineralizing cultures were enriched from two linuron-treated agricultural soils in the presence and absence of a solid support. The cultures contained linuron-degrading bacteria, which coexisted with bacteria degrading either 3,4-dichloroaniline (3,4-DCA) or N,O-dimethylhydroxylamine (N,O-DMHA), two common metabolites in the linuron degradation pathway. For one soil, the presence of a solid support enriched for linuron-degrading strains phylogenetically related to but different from those enriched without support. Most linuron-degrading consortium members were identified as Variovorax, but a Hydrogenophaga and an Achromobacter strain capable of linuron degradation were also obtained. Several of the linuron-degrading isolates also degraded 3,4-DCA. Isolates that degraded 3,4-DCA but not linuron belonged to the genera Variovorax, Cupriavidus and Afipia. Hyphomicrobium spp. were involved in the metabolism of N,O-DMHA. Whereas several isolates degraded linuron independently, more efficient degradation was achieved by combining linuron and 3,4-DCA-degraders or by adding casamino acids. These data suggest that (1) linuron degradation is performed by a group of metabolically interacting bacteria rather than by individual strains, (2) there are other genera in addition to Variovorax that degrade linuron beyond 3,4-DCA, (3) linuron-degrading consortia of different origins have a similar composition, and (4) interactions between consortium members can be complex and can involve exchange of both metabolites and other nutrients.  相似文献   

3.
The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture.  相似文献   

4.
The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture.  相似文献   

5.
The study of biofilm function, structure and microbial interactions might help to improve our understanding of biofilm wastewater treatment processes. However, few reports specifically address the influence of interactions within multispecies biofilms on microbial activity and biofilm composition. Thus, the relationship between biofilm formation, denitrification activity, phosphorus removal and the composition of extracellular polymeric substances (EPS), exopolysaccharides and the bacterial community was investigated using biofilms of denitrifying and phosphorus removing strains Comamonas denitrificans 110, Brachymonas denitrificans B79, Aeromonas hydrophila L6 and Acinetobacter calcoaceticus ATCC23055. Denitrification activity within the biofilms generally increased with the amount of biofilm while phosphorus removal depended on bacterial growth rate. Synergistic effects of co-growth on denitrification (B. denitrificans B79 and A. hydrophila L6) and phosphorus removal (C. denitrificans 110 with either A. calcoaceticus or A. hydrophila L6) were observed. B. denitrificans B79 was highly affected by interspecies interactions with respect to biofilm formation, denitrification activity and EPS composition, while C. denitrificans 110 remained largely unaffected. In some of the dual and quadruple strain biofilms new exopolysaccharide monomers were detected which were not present in the pure strain samples.  相似文献   

6.
A plant-microbial bioassay, based on the aquatic macrophyte Lemna minor L. (duckweed), was used to monitor biodegradation of nano- and micromolar concentrations of the phenylurea herbicide linuron. After 7 days of exposure to linuron, log-logistic-based dose-response analysis revealed significant growth inhibition on the total frond area of L. minor when linuron concentrations > or = 80 nM were added to the bioassay. A plant-protective effect was obtained for all concentrations > 80 nM by inoculation with either a bacterial consortium or Variovorax paradoxus WDL1, which is probably the main actor in this consortium. The outcome of the plant-microbe-toxicant interaction was also assessed using pulse amplitude-modulated chlorophyll a fluorescence and chlorophyll a fluorescence imaging. Linuron toxicity to L. minor became apparent as a significant decrease in the effective quantum yield (Delta F/Fm') within 90 min after exposure of the plants to linuron concentrations > or = 160 nM. Inoculation of the bioassay with the linuron-degrading bacteria neutralized the effect on the effective quantum yield at concentrations > or = 160 nM, indicating microbial degradation of these concentrations. The chlorophyll a fluorescence-based Lemna bioassay described here offers a sensitive, fast and cost-effective approach to study the potential of biodegrading microorganisms to break down minute concentrations of photosynthesis-inhibiting xenobiotics.  相似文献   

7.
8.
Members of a triple-species 3-(3,4-dichlorophenyl)-1-methoxy-1-methyl urea (linuron)-mineralizing consortium, i.e. the linuron- and 3,4-dichloroaniline-degrading Variovorax sp. WDL1, the 3,4-dichloroaniline-degrading Comamonas testosteroni WDL7 and the N,O-dimethylhydroxylamine-degrading Hyphomicrobium sulfonivorans WDL6, were cultivated as mono- or multi-species biofilms in flow cells irrigated with selective or nonselective media, and examined with confocal laser scanning microscopy. In contrast to mono-species biofilms of Variovorax sp. WDL1, the triple-species consortium biofilm degraded linuron completely through apparent synergistic interactions. The triple-species linuron-fed consortium biofilm displayed a heterogeneous structure with an irregular surface topography that most resembled the topography of linuron-fed mono-species WDL1 biofilms, indicating that WDL1 had a dominating influence on the triple-species biofilm architecture. This architecture was dependent on the carbon source supplied, as the biofilm architecture of WDL1 growing on alternative carbon sources was different from that observed under linuron-fed conditions. Linuron-fed triple-species consortium biofilms consisted of mounds composed of closely associated WDL1, WDL7 and WDL6 cells, while this association was lost when the consortium was grown on a nonselective carbon source. In addition, under linuron-fed conditions, microcolonies displaying associated growth developed rapidly after inoculation. These observations indicate that the spatial organization in the linuron-fed consortium biofilm reflected the metabolic interactions within the consortium.  相似文献   

9.
Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.  相似文献   

10.
We have studied the differences in the organic matter processing and biofilm composition and structure between autoheterotrophic and heterotrophic biofilm communities. Microbial communities grown on artificial biofilms were monitored, following incubation under light and dark conditions and with or without the addition of glucose as a labile organic compound. Glucose addition greatly affected the microbial biofilm composition as shown by differences in 16S rRNA gene fingerprints. A significant increase in β-glucosidase and peptidase enzyme activities were also observed in glucose-amended biofilms incubated in the dark, suggesting an active bacterial community. Light enhanced the algal and bacterial growth, as well as higher extracellular enzyme activity, thereby indicating a tight algal–bacterial coupling in biofilms incubated under illumination. In these biofilms, organic compounds excreted by photosynthetic microorganisms were readily available for bacterial heterotrophs. This algal–bacterial relationship weakened in glucose-amended biofilms grown in the light, probably because heterotrophic bacteria preferentially use external labile compounds. These results suggest that the availability of labile organic matter in the flowing water and the presence of light may alter the biofilm composition and function, therefore affecting the processing capacity of organic matter in the stream ecosystem.  相似文献   

11.
Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.  相似文献   

12.
Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74–88 and 74–98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.  相似文献   

13.
Centrifugal compaction causes changes in the surface properties of bacterial cells. It has been shown previously that the surface properties of planktonic cells change with increasing centrifugal compaction. This study aimed to analyze the influences of centrifugal compaction and environmental conditions on the visco-elastic properties of oral biofilms. Biofilms were grown out of a layer of initially adhering streptococci, actinomyces or a combination of these. Different uni-axial deformations were induced on the biofilms and the load relaxations were measured over time. Linear-Regression-Analysis demonstrated that both the centrifugation coefficient for streptococci and induced deformation influenced the percentage relaxation. Centrifugal compaction significantly influenced relaxation only upon compression of the outermost 20% of the biofilm (p < 0.05), whereas biofilm composition became influential when 50% deformation was induced, invoking re-arrangement of the bacteria in deeper biofilm structures. In summary, the effects of centrifugal compaction of initially adhering, centrifuged bacteria extend to the visco-elastic properties of biofilms, indicating that the initial bacterial layer influences the structure of the entire biofilm.  相似文献   

14.
Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a ‘T7-like virus’ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy.  相似文献   

15.
Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had increased from 0.20 to 0.52 μm–3 for transmission of the non-EPS producing strain under high contact pressure. The EPS producing strain had similar densities before and after transmission (0.17 μm–3). This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation of biofilm structure to its pre-transmission density in EPS-rich biofilms.  相似文献   

16.
Most soil bacteria are likely to be organized in biofilms on roots, litter, or soil particles. Studies of such biofilms are complicated by the many nonculturable species present in soil, as well as the interspecific bacterial interactions affecting biofilm biology. We in this study describe the development of a biofilm flow model and use this system to establish an early (days 1–7) flow biofilm of soil bacteria from agricultural soil. It was possible to follow the succession in the early flow biofilm by denaturing gradient gel electrophoresis (DGGE) analysis, and it was demonstrated that the majority of strains present in the biofilm were culturable. We isolated and identified nine strains, all associated with unique DGGE profiles, and related their intrinsic phenotypes regarding monospecies biofilm formation in microtiter plates and planktonic growth characteristics to the appearance of the strains in the flow biofilm. The ability of the strains to attach to and establish biofilm in microtiter plates was reflected in their flow biofilm appearance, whereas no such reflection of the planktonic growth characteristics in the flow biofilm appearance was observed. One strain-specific synergistic interaction, strongly promoting biofilm formation of two strains when cultured together in a dual-species biofilm, was observed, indicating that some strains promote biofilm formation of others. Thus, the biofilm flow model proved useful for investigations of how intrinsic phenotypic traits of individual species affect the succession in an early soil biofilm consortium.  相似文献   

17.
Copper (Cu) contamination is a potential threat to the marine environment due to the use of Cu-based antifouling paints. Cu stress on larval settlement of the polychaete Hydroides elegans was investigated, and this was linked to Cu stress on biofilms and on the biofilm development process. The inductiveness of young biofilms was more easily altered by Cu stress than that of old biofilms, indicating the relative vulnerability of young biofilms. This might result from changes in bacterial survival, the bacterial community composition and the chemical profiles of young biofilms. Cu also affected biofilm development and the chemical high performance liquid chromatograph fingerprint profile. The results indicate that Cu affected larval settlement mainly through its effect on the process of biofilm development in the marine environment, and the chemical profile was crucial to biofilm inductiveness. It is strongly recommended that the effects of environmentally toxic substances on biofilms are evaluated in ecotoxicity bioassays using larval settlement of invertebrates as the end point.  相似文献   

18.
Aims:  To characterize biofilm formation of a chlorobenzoates (CBs) degrading bacterium, Burkholderia sp. NK8, with another bacterial species, and the biodegradation activity against CBs in the mixed-species biofilm.
Methods and Results:  Burkholderia sp. NK8 was solely or co-cultured with each of five other representative bacteria in microtitre dishes. Biofilm formation involving the strain NK8 was synergistically promoted by co-culturing with only Pseudomonas aeruginosa PAO1. Epifluorescent microscopy revealed that cells of the bacterial strain NK8 were viable and distributed randomly in the mixed-species biofilms. Enumeration of the attached cells on the surface of wells revealed that cells of the strain NK8 increased approx. 10-fold by the co-culture with the strain PAO1 compared to those by monoculture of the strain NK8, and the degradation activity of 3-chlorobenzoate by the dual-species biofilms was more promoted than that by the strain NK8-monocultured biofilms.
Conclusions:  Enhanced biofilm formation of Burkholderia sp. NK8 by the bacterial consortium occurred, but is determined by the partner bacterial species. The mixed-species biofilms have the advantage to degrade CBs on a solid surface.
Significance and Impact of the Study:  This study provides a significance of bacterial consortia on the biofilm formation and the degradation activity of Burkholderia sp. NK8, which contribute for complete degradation of chlorinated aromatics.  相似文献   

19.
Variovorax sp. strain WDL1, which mineralizes the phenylurea herbicide linuron, expresses a novel linuron-hydrolyzing enzyme, HylA, that converts linuron to 3,4-dichloroaniline (DCA). The enzyme is distinct from the linuron hydrolase LibA enzyme recently identified in other linuron-mineralizing Variovorax strains and from phenylurea-hydrolyzing enzymes (PuhA, PuhB) found in Gram-positive bacteria. The dimeric enzyme belongs to a separate family of hydrolases and differs in Km, temperature optimum, and phenylurea herbicide substrate range. Within the metal-dependent amidohydrolase superfamily, HylA and PuhA/PuhB belong to two distinct protein families, while LibA is a member of the unrelated amidase signature family. The hylA gene was identified in a draft genome sequence of strain WDL1. The involvement of hylA in linuron degradation by strain WDL1 is inferred from its absence in spontaneous WDL1 mutants defective in linuron hydrolysis and its presence in linuron-degrading Variovorax strains that lack libA. In strain WDL1, the hylA gene is combined with catabolic gene modules encoding the downstream pathways for DCA degradation, which are very similar to those present in Variovorax sp. SRS16, which contains libA. Our results show that the expansion of a DCA catabolic pathway toward linuron degradation in Variovorax can involve different but isofunctional linuron hydrolysis genes encoding proteins that belong to evolutionary unrelated hydrolase families. This may be explained by divergent evolution and the independent acquisition of the corresponding genetic modules.  相似文献   

20.
Staphylococcus epidermidis is a commensal inhabitant of the healthy human skin, but in the recent years, it has been recognized as a nosocomial pathogen especially in immunocompromised patients. The pathogenesis of S. epidermidis is thought to be based on its capacity to form biofilms on the surface of medical devices, where bacterial cells may persist, protected from host defence and antimicrobial agents. Rifampin has been shown to be one of the most active antimicrobial agents in the eradication of the staphylococcal biofilm. However, this antibiotic should not be used in monotherapy. Therefore, one of the objectives of our research was to study the efficacy of the tigecycline/rifampin combination against methicillin-resistant S. epidermidis embedded in biofilms. Of the 80 clinically significant S. epidermidis isolates, 75 strains possess the ability to form a biofilm. These bacteria formed the biofilm via ica-dependent mechanisms. However, other biofilm-associated genes, including aap (encoding accumulation-associated protein) and bhp (coding cell wall-associated protein), were present in 85 and 29 % of isolates, respectively. The biofilm structures of S. epidermidis strains were also analyzed in confocal laser scanning microscopy (CLSM) and the obtained image demonstrated differences in their architecture. In vitro studies showed that the MIC value for tigecycline against S. epidermidis growing in the biofilm ranged from 0.125 to 2 μg/mL. Tigecycline in combination with rifampin demonstrated higher activity against bacteria embedded in biofilms than tigecycline alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号