首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
20-Hydroxyecdysone is one of the most common ecdysteroids in plants with potential therapeutic applications. In this study, cell suspension cultures of Achyranthes aspera were raised in shake flasks to investigate the production of 20-hydroxyecdysone. The quantification and characterization of 20-hydroxyecdysone in the cultures were done by High performance liquid chromatography (HPLC) and Liquid Chromatography-quadrupole time-of- flight mass spectrometry (LC-Q-TOF) analyses. For raising the suspension, calli initiated from in vitro grown leaf explants were cultured in liquid Murashige and Skoog (MS) medium augmented with combinations of 2, 4-dichlorophenoxyacetic acid (1 mg L?1) and α-naphthaleneacetic acid (1 mg L?1). Maximum growth index of the cell suspension was 9.9, which was achieved during 20th day of culture (final phase of exponential growth). At this stage, the biomass accumulated was 1.09 ± 0.09 g dry weight (DW) and the 20-hydroxyecdysone concentration was 0.24 mg g?1 DW. Eliciting the cultures with 0.6 mM Methyl jasmonate for 6 days; enhanced the production of 20-hydroxyecdysone production to 0.35 mg g?1 DW. By augmenting the cultures with the precursors namely cholesterol (10 mg L?1) and 7-dehydrocholesterol (10 mg L?1), production of 20-hydroxyecdysone was boosted to 0.31 mg g?1 DW and 0.28 mg g?1 DW respectively.  相似文献   

2.
Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L?1 days?1, or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L?1.  相似文献   

3.
The present study investigated growth and biodegradation of 4-bromophenol (4-BP) by Arthrobacter chlorophenolicus A6 in batch shake flasks as well as in a continuously operated packed bed reactor (PBR). Batch growth kinetics of A. chlorophenolicus A6 in presence of 4-BP followed substrate inhibition kinetics with the estimated biokinetic parameters value of μ max = 0.246 h?1, K i = 111 mg L?1, K s  = 30.77 mg L?1 and K = 100 mg L?1. In addition, variations in the observed and theoretical biomass yield coefficient and maintenance energy of the culture were investigated at different initial 4-BP concentration. Results indicates that the toxicity tolerance and the biomass yield of A. chlorophenolicus A6 towards 4-BP was found to be poor as the organism utilized the substrate mainly for its metabolic maintenance energy. Further, 4-BP biodegradation performance by the microorganism was evaluated in a continuously operated PBR by varying the influent concentration and hydraulic retention time in the ranges 400–1,200 mg L?1 and 24–7.5 h, respectively. Complete removal of 4-BP was achieved in the PBR up to a loading rate of 2,276 mg L?1 day?1.  相似文献   

4.
The effects of varying initial concentrations of microcrystalline cellulose on cellulase production with Trichoderma reesei RUT-C30 as well as the effects of varying lactose and ammonium sulfate concentrations in the feed medium were studied simultaneously in parallel-operated shake flasks and, alternatively, in parallel-operated stirred-tank bioreactors on a 10-mL scale. Fifteen experiments were performed as triplicates in shake flasks as well as in stirred-tank bioreactors in parallel to identify the parameters of second-order polynomials for the estimation of the final filter paper activity of T. reesei RUT-C30 after a process time of 96 h. Even though parameter estimation was not possible based on the results of the shake flasks due to final enzyme activities at or below the detection limit (with the exception of one shake flask), the identification of the second-order polynomial was successful with the results of the parallel-operated stirred-tank bioreactors on a 10-mL scale. Reaction conditions with 53.3 g L?1 microcrystalline cellulose in the initial medium, no lactose feeding and 3.3 g L?1 day?1 intermittent ammonium sulfate addition were estimated to be optimal. The final experimental validation of the optimum substrate supply on a L-scale resulted in the production of 4.88 filter paper units (FPU) mL?1 with T. reesei RUT-C30 after 96 h. This is an improvement by a factor of 3.6 compared to the reference batch process (1.35 FPU mL?1).  相似文献   

5.
In this study, the dynamics of biomass production, accumulation of periplocin, medium conditions and consumption of carbon, nitrogen and phosphate were investigated in adventitious roots culture of Periploca sepium in shake flasks over a period of 4 weeks. The biomass reached the maximum peak on day 24 (2.46 and 0.213 g of fresh and dry weight, respectively). Similarly, periplocin production got to a peak of 0.083 mg g?1 on day 24, simultaneously. PH in medium had a decrease tendency at the beginning and then remained stable around 4.0, however, EC declined during the whole culture with the nutrients consumed. Sucrose was almost used up on the first 12 days which led to the increase in glucose and fructose. In case of nitrogen, consumption of ammonium is faster than nitrate at the beginning. Phosphate was almost consumed during the first 8 days. Based on the nutrients consumption, the adding time of nutrients (1/2 MS medium and 30 g L?1 sucrose) was investigated and it obtained highest content of periplocin (0.106 mg g?1) and yield (0.513 mg L?1) on day 12.  相似文献   

6.

Background

Efficient microbial production of chemicals is often hindered by the cytotoxicity of the products or by the pathogenicity of the host strains. Hence 2,3-butanediol, an important drop-in chemical, is an interesting alternative target molecule for microbial synthesis since it is non-cytotoxic. Metabolic engineering of non-pathogenic and industrially relevant microorganisms, such as Escherichia coli, have already yielded in promising 2,3-butanediol titers showing the potential of microbial synthesis of 2,3-butanediol. However, current microbial 2,3-butanediol production processes often rely on yeast extract as expensive additive, rendering these processes infeasible for industrial production.

Results

The aim of this study was to develop an efficient 2,3-butanediol production process with E. coli operating on the premise of using cost-effective medium without complex supplements, considering second generation feedstocks. Different gene donors and promoter fine-tuning allowed for construction of a potent E. coli strain for the production of 2,3-butanediol as important drop-in chemical. Pulsed fed-batch cultivations of E. coli W using microaerobic conditions showed high diol productivity of 4.5 g l?1 h?1. Optimizing oxygen supply and elimination of acetoin and by-product formation improved the 2,3-butanediol titer to 68 g l?1, 76% of the theoretical maximum yield, however, at the expense of productivity. Sugar beet molasses was tested as a potential substrate for industrial production of chemicals. Pulsed fed-batch cultivations produced 56 g l?1 2,3-butanediol, underlining the great potential of E. coli W as production organism for high value-added chemicals.

Conclusion

A potent 2,3-butanediol producing E. coli strain was generated by considering promoter fine-tuning to balance cell fitness and production capacity. For the first time, 2,3-butanediol production was achieved with promising titer, rate and yield and no acetoin formation from glucose in pulsed fed-batch cultivations using chemically defined medium without complex hydrolysates. Furthermore, versatility of E. coli W as production host was demonstrated by efficiently converting sucrose from sugar beet molasses into 2,3-butanediol.
  相似文献   

7.
The microbial expression of intracellular, recombinant proteins in continuous bioprocesses suffers from low product concentrations. Hence, a process for the intracellular production of photoactivatable mCherry with Escherichia coli in a continuously operated cascade of two stirred-tank reactors was established to separate biomass formation (first reactor) and protein expression (second reactor) spatially. Cascades of miniaturized stirred-tank reactors were implemented, which enable the 24-fold parallel characterization of cascade processes and the direct scale-up of results to the liter scale. With PAmCherry concentrations of 1.15 g L?1 cascades of stirred-tank reactors improved the process performance significantly compared to production processes in chemostats. In addition, an optimized fed-batch process was outperformed regarding space–time yield (149 mg L?1 h?1). This study implicates continuous cascade processes to be a promising alternative to fed-batch processes for microbial protein production and demonstrates that miniaturized stirred-tank reactors can reduce the timeline and costs for cascade process characterization.  相似文献   

8.
The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l?1 was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l?1. Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h?1 and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.  相似文献   

9.
In this study, callus and cell suspension were induced from seedlings of licorice (G. uralensis). In addition, it was revealed that the appropriate concentration of sucrose could promote the callus growth and increase the content of polysaccharide. The methyl jasmonate (MJ) and phenylalanine (PHE) could enhance the callus growth and content of flavonoids for G. uralensis. For producing more flavonoids and polysaccharide, two-stage cultivation was performed. In the first step, 30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day of culture to enhance cell production and metabolite production. In a two-stage cultivation process, PHE (2 mM) and MJ (5 mg L?1) were added into a 5-L balloon-type bubble bioreactor after 10 days of culture. Using a fed-batch cultivation strategy (30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day), polysaccharide production was enhanced to 1.19 g L?1, which was 2.12-fold greater than that in batch cultivation. The flavonoids yield (55.42 mg L?1) which was about 22 % higher than that in batch cultivation was obtained on 21st day. In a two-stage cultivation process, the polysaccharide content was increased by 1.14- and 2.12-fold compared with fed-batch cultivation and batch cultivation on 15th day. Meanwhile, total flavonoids yield (132.36 mg L?1) on 15th day, was increased by 2.26- and 2.67-fold compared with fed-batch cultivation and batch cultivation. In conclusion, two-stage cultivation process combined with the sucrose and elicitor treatment could promote both the callus growth and the secondary metabolites accumulation.  相似文献   

10.
A bioengineered heparin, as a replacement for animal-derived heparin, is under development that relies on the fermentative production of heparosan by Escherichia coli K5 and its subsequent chemoenzymatic modification using biosynthetic enzymes. A critical enzyme in this pathway is the mammalian 6-O-sulfotransferase (6-OST-1) which specifically sulfonates the glucosamine residue in a heparin precursor. This mammalian enzyme, previously cloned and expressed in E. coli, is required in kilogram amounts if an industrial process for bioengineered heparin is to be established. In this study, high cell density cultivation techniques were exploited to obtain recombinant 6-OST-1. Physiological studies were performed in shake flasks to establish optimized growth and production conditions. Induction strategies were tested in fed-batch experiments to improve yield and productivity. High cell density cultivation in 7-l culture, together with a coupled inducer strategy using isopropyl β-d-1-thiogalactopyranoside and galactose, afforded 482 mg?l?1 of enzyme with a biomass yield of 16.2 mg?gcdw ?1 and a productivity of 10.5 mg?l?1?h?1.  相似文献   

11.
The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition of individual organic nitrogen sources (soy peptone, glutamate, glycine and alanine) within a basal medium containing Avicel (i.e. micro crystalline cellulose) and ammonium sulphate. It was found that in the shake flask experiments, the highest cellulase activities (~0.1 ± 0.02 FPU ml?1) were obtained with media containing soy peptone (3–6 g l?1) and glutamate (3.6 g l?1). However, these improvements in the cellulase titers in the presence of the organic nitrogen sources appeared to be related to smaller changes in the pH of the medium. This was confirmed using stirred tank bioreactors with pH control. No significant differences were observed in the highest cellulase titers and the protein pattern (according to the SDS-PAGE) of supernatants from pH controlled stirred tank bioreactor cultivations, when different nitrogen sources were used in the medium. Here the cellulase activities (~1.0 ± 0.2 FPU ml?1) were also much greater (8–150 times) than in shake flask cultivation. Consequently, the addition of ammonium sulphate as sole nitrogen source to Avicel basal medium is recommended when performing cultivations in stirred tank bioreactors with strict pH controlled conditions.  相似文献   

12.
Abstract

Vitamin B12 and propionic acid that were simultaneous produced by Propionibacterium freudenreichii are both favorable chemicals widely used in food preservatives, medicine, and nutrition. While the carbon source and propionic acid accumulation reflected fermentation efficiency. In this study, using corn stalk as a carbon source and fed-batch fermentation process in an expanded bed adsorption bioreactor was studied for efficient and economic biosynthesis of acid vitamin B12 and propionic. With liquid hot water pretreated corn stalk hydrolysates as carbon source, 28.65?mg L?1 of vitamin B12 and 17.05?g L?1 of propionic acid were attained at 168?h in batch fermentation. In order to optimize the fermentation outcomes, fed-batch fermentation was performed with hydrolyzed corn stalk in expanded bed adsorption bioreactor (EBAB), giving 47.6?mg L?1 vitamin B12 and 91.4?g L?1 of propionic acid at 258?h, which correspond to product yields of 0.37?mg g?1 and 0.75?g g?1, respectively. The present study provided a promising strategy for economically sustainable production of vitamin B12 and propionic acid by P. freudenreichii fermentation using biomass cornstalk as carbon source and expanded bed adsorption bioreactor.  相似文献   

13.
The newly isolated basidiomycetous fungus, identified as Ganoderma lucidum RCKB-2010 was tested for production of ganoderic acid (GA) under submerged fermentation conditions. Production of GA under liquid static cultivation condition was found to be 2,755.88 mg L?1 on the 25th day of incubation, whereas under shaking cultivation conditions the maximum production of GA was observed to be 373.75 mg L?1. 1H NMR analysis revealed clearly that the fungal extracts possessed a lanostane skeleton, confirming the presence of GA. Interestingly, GA was found to have potential to inhibit the proliferation of HeLa cells and U87 human glioma cells in a dose dependent manner. In addition, GA was also found to possess antibacterial activity, exhibiting a minimal inhibitory concentration of 0.25 mg mL?1 against standard strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. GA produced in the present study holds potential as a potent anticancer agent.  相似文献   

14.
Dissociated cells separated from a natural colony of Nostoc flagelliforme were cultivated heterotrophically in the darkness on glucose under fed-batch culture conditions. The effects of carbon sources (glucose, fructose, xylose, and sucrose) and concentrations on cell growth and extracellular polysaccharide (EPS) production were investigated. At harvest, the culture contained 1.325 g L?1 of biomass and 117.2 mg L?1 of EPS, respectively. The gravimetric EPS production rate was 16.7 mg g?1 cell dry weight day?1, which was 2.1 times higher than previously reported. Using sigmoid model, batch fermentation of N. flagelliforme was kinetically simulated to obtain equations including substrate consumption, biomass growth, and EPS accumulation. Results from a simulation correlated well with the experimental ones, indicating that this method could be useful in studying EPS production from batch and fed-batch cultures.  相似文献   

15.
The study assesses the influence of different concentrations of nitrogen and phosphorus sources on ginsenoside biosynthesis in Panax quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreactor. The saponin content was determined using HPLC. The maximum yield (12.45 mg g?1 dw) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved in modified Gamborg B-5 medium containing 0.83 mM l?1 phosphate, 12.4 mM l?1 nitrate and 0.5 mM l?1 ammonium. The yield itself was 1.93 times higher than that achieved in standard Gamborg medium. The modified medium also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The saponin content (35.11 mg g?1 d.w.) was 2.75-times higher than that achieved in control medium.  相似文献   

16.
Higher lipid production and nutrient removal rates are the pursuing goals for synchronous biodiesel production and wastewater treatment technology. An oleaginous alga Chlorella sp. HQ was tested in five different synthetic water, and it was found to achieve the maximum biomass (0.27 g L?1) and lipid yield (41.3 mg L?1) in the synthetic secondary effluent. Next, the effects of the stationary phase elongation and initial nitrogen (N) and phosphorus (P) concentrations were investigated. The results show that the algal characteristics were affected apparently under different N concentrations but not P, which were verified by Logistic and Monod models. At the early stationary phase, the algal biomass, lipid and triacylglycerols (TAGs) yields, and P removal efficiency increased and reached up to 0.19 g L?1, 46.7 mg L?1, 14.3 mg L?1, and 94.3 %, respectively, but N removal efficiency decreased from 86.2 to 26.8 % under different N concentrations. And the largest TAGs yield was only 6.4 mg L?1 and N removal efficiency was above 71.1 % under different P concentrations. At the late stationary phase, the maximal biomass, lipid and TAGs yields, and P removal efficiencies primarily increased as the initial N and P concentrations increase and climbed up to 0.49 g L?1, 99.2 mg L?1, 54.0 mg L?1, and 100.0 %, respectively. It is concluded that stationary phase elongation is of great importance and the optimal initial N/P ratio should be controlled between 8/1 and 20/1 to serve Chlorella sp. HQ for better biodiesel production and secondary effluent purification.  相似文献   

17.
Azospirillum brasilense has industrial significance as a growth promoter in plants of commercial interest. However, there is no report in the literature disclosing a liquid product produced in pilot-scale bioreactors and is able to be stored at room temperature for more than 2 years. The aim of this work was to scale up a process from a shake flask to a 10-L lab-scale and 1,000-L pilot-scale bioreactor for the production of plant growth-promoting bacterium A. brasilense for a liquid inoculant formulation. Furthermore, this work aimed to determine the shelf life of the liquid formulation stored at room temperature and to increase maize crops yield in greenhouses. Under a constant oxygen mass transfer coefficient (K L a), a fermentation process was successfully scaled up from shake flasks to 10- and 1,000-L bioreactors. A concentration ranging from 3.5 to 7.5?×?108 CFU/mL was obtained in shake flasks and bioreactors, and after 2 years stored at room temperature, the liquid formulation showed one order of magnitude decrease. Applications of the cultured bacteria in maize yields resulted in increases of up to 95 % in corncobs and 70 % in aboveground biomass.  相似文献   

18.
The study assessed the influence of sugar concentration (10, 20, 30, 50, 70, 100, 120 g l?1) on growth and ginsenoside biosynthesis in Panax quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreactor. The highest growth rate was achieved in medium containing 3–5 % sucrose. More than 70 g l?1 or less than 20 g l?1 sugar content in the medium induces significant inhibition of root growth when cultivated in shake flasks. The saponin content was determined using HPLC. The maximum yield (above 9 mg g?1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was obtained with 30 g l?1 sucrose in the medium. The sucrose concentration in the medium was found to correlate with saponin content in bioreactor-cultured specimens. A higher level of protopanaxadiol derivatives was found for lower (20 and 30 g l?1) sucrose concentrations; higher sucrose concentrations (50 and 70 g l?1) in the medium stimulated a higher level of Rg group saponins.  相似文献   

19.
d-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert d-galactose into d-galactonate, a valuable compound in the polymer and cosmetic industries. d-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L?1 d-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L?1 d-galactonate. Inherent metabolic pathways for assimilating both d-galactose and d-galactonate were blocked to enhance the production of d-galactonate. This approach finally led to a 7.3-fold increase with d-galactonate concentration of 1.24 g L?1 and yield of 62.0 %. Batch fermentation in 20 g L?1 d-galactose of E. coli ?galK?dgoK mutant expressing the gld resulted in 17.6 g L?1 of d-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of d-galactonate.  相似文献   

20.
Production of lipopeptides fengycin and surfactin in rotating discs bioreactor was studied. The effects of rotation velocity and the addition of agitators between the discs on volumetric oxygen transfer coefficient k L a were firstly studied in model media. Then the production of lipopeptides was also studied at different agitation conditions in the modified bioreactor (with agitators). The effect of agitation on dissolved oxygen, on submerged and immobilized biomass, on lipopeptide concentrations and yields and on the selectivity of the bioreaction was elucidated and discussed. The proposed modified rotating discs bioreactor allowed to obtain high fengycin concentrations (up to 787 mg L?1), but also better selectivity of the bioreaction towards fengycin (up to 88 %) and better yields of fengycin per glucose (up to 62.9 mg g?1), lipopeptides per glucose (up to 71.5 mg g?1), fengycin per biomass (up to 309 mg g?1) and lipopeptides per biomass (up to 396 mg g?1) than those reported in the literature. Highest fengycin production and selectivity were obtained at agitation velocity of 30 min?1. The proposed non-foaming fermentation process could contribute to the scale-up of lipopeptide fermentors and promote the industrial production of fengycin. The proposed bioreactor and bioprocess could be very useful also for the production of other molecules using bioprocesses requiring bubbleless oxygen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号