首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding human interferon omega-1 (IFN-omega 1) was isolated from a cosmid library, sequenced and expressed in Chinese hamster ovary (CHO) cells under the control of an SV40-derived promoter/enhancer sequence. Culture supernatants of stably transfected cell clones contained biologically active IFN-omega 1 at concentrations up to 10 micrograms/l. Amplification of the expression vector containing a dhfr gene under methotrexate selection pressure resulted in yields up to 200 micrograms/l. Production of IFN-omega 1 was further enhanced 2- to 3-fold by propagation of the cells in the presence of n-butyrate. IFN-omega 1 was purified from culture supernatants by monoclonal antibody affinity chromatography. The resulting protein was at least 95% pure as determined by reverse-phase HPLC and size-exclusion HPLC. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed two bands of about the same intensity with apparent molecular masses of 24.5 and 22.5 kDa. Upon treatment with peptide:N-glycosidase F, both bands were shifted to lower molecular masses (20.5 and 18.5 kDa), indicating that CHO cell-derived IFN-omega 1 is glycosylated; Asn-78 was identified as the glycosylation site. Analysis of the carbohydrate moiety using glycosidases and lectins revealed the presence of biantennary complex oligosaccharides containing neuraminic acid. Amino acid sequencing showed that only about 40% of the molecules have the expected N-terminus, whereas the others carry two additional amino acids derived from the signal sequence. C-terminal amino acid sequencing using carboxypeptidase P demonstrated that the smaller form of the protein lacks nine amino acids. Disulfide bridges were shown to connect Cys residues 1 and 99 as well as 29 and 139, respectively, as in IFN-alpha. The specific antiviral activity of recombinant, glycosylated human IFN-omega 1 on human cells was 2.6 x 10(8) IU/mg, not significantly different from that of the authentic, human leukocyte-derived protein.  相似文献   

2.
Site-specific in vitro mutagenesis was used to direct various amino acid substitutions at conserved positions within the sequence of human interferon-alpha 1 (IFN-alpha 1). The antiviral specific activity of IFN-alpha 1, expressed in M13 as a fusion protein [IFN-alpha 1 (phi WT)], could be altered by single amino acid substitutions. The substitution of glycine for tyrosine at position 123 results in a loss of more than 99% of the antiviral specific activity on human cells, but causes no significant change in the antiviral specific activity on primary bovine cells. The tyrosine at position 123 is thus implicated in determining human cell specificity. Based on analysis of IFN-alpha 2, IFN-alpha 1 contains two dulsulphide bridges between cysteine residues 29 and 139 and cysteine residues 1 and 99. IFN-alpha 1 also contains a fifth cysteine residue at position 86. IFN-alpha 1 (phi WT) carrying three serine for cysteine substitutions at positions 1, 86 and 99 retains 23% of the antiviral specific activity of IFN-alpha 1 (phi WT) on human cells. However, the antiviral activity on bovine cells is not significantly affected by this modification. The presence of the disulphide bridge between residues 1 and 99 thus appears to be required for full antiviral activity on human but not bovine cells. A single serine for cysteine substitution at position 29 reduces the antiviral specific activity on both human and bovine cells by some 95%. This data shows that the disulphide bridge between residues 29 and 139 is critical for the antiviral activity of IFN-alpha's.  相似文献   

3.
Three peptides corresponding to the sequences 124-144, 124-138, 129-144 of the human leukocyte interferon alpha 2 (IFN-alpha 2) were synthesized. The synthesis was performed by DCC-HOBT coupling of protected peptide segments in solution. The segments were obtained by the active ester coupling methodology using base-labile 2-[4-(phenylazobenzyl)sulfonyl]ethyl (Pse) group as carboxyterminal protection. After complete deprotection with 1 M methanesulphonic acid in trifluoroacetic acid--thioanisol--m-cresol mixture the peptides were purified by reversed-phase chromatography. The studies of interaction of the peptides with rabbit antiserum against IFN-alpha 2 revealed at least one minor antigenic determinant within the 124-144 region of IFN-alpha 2 amino acid sequence. Rabbit antisera developed against peptides 124-138 and 129-144 showed ability of binding recombinant IFN-alpha 2 and neutralizing its antiviral activity. Free peptides or their conjugates with bovine serum albumine did not display antiviral activity, neither could they inhibit the activity of IFN-alpha 2.  相似文献   

4.
Supernatants of mitogen-stimulated human leukocytes contain two biologically related cytokines, IL-1 and hybridoma growth factor (HGF). IL-1 beta is a potent inducer of HGF in fibroblasts but has little stimulating effect on monocytes that spontaneously produce HGF. Leukocyte-derived HGF and IL-1 were separated by the use of affinity chromatography on specific antibodies and discriminating assay systems for both cytokines. They had different Mr upon gel filtration and SDS-PAGE. In contrast to IL-1 beta, HGF showed heterogeneity on a cation-exchange column. IL-1 beta and HGF were purified to homogeneity by a sequence of four and five purification steps, respectively. Leukocyte-derived HGF was characterized by analysis of its NH2-terminal amino acid sequence. This revealed complete homology with fibroblast-derived HGF, 26-kDa protein, IFN-beta 2, and B cell stimulatory factor 2, molecules which have collectively been designated as IL-6. IL-1 beta exerted an antiviral and growth-promoting effect of fibroblasts, whereas HGF/IL-6 did not. Both IL-1 and IL-6 possessed lymphocyte-activating factor activity, which could be neutralized only by an anti-serum against the corresponding cytokine.  相似文献   

5.
The immune response modifiers, imiquimod and resiquimod, are TLR7 agonists that induce type I interferon in numerous species, including humans. Recently, it was shown that plasmacytoid dendritic cells (pDC) are the primary interferon-producing cells in the blood in response to viral infections. Here, we characterize the activation of human pDC with the TLR7 agonists imiquimod and resiquimod. Results indicate that imiquimod and resiquimod induce IFN-alpha and IFN-omega from purified pDC, and pDC are the principle IFN-producing cells in the blood. Resiquimod-stimulated pDC also produce a number of other cytokines including TNF-alpha and IP-10. Resiquimod enhances co-stimulatory marker expression, CCR7 expression, and pDC viability. Resiquimod was compared throughout the study to the pDC survival factors, IL-3 and IFN-alpha; resiquimod more effectively matures pDC than either IL-3 or IFN-alpha alone. These results demonstrate that imidazoquinoline molecules directly induce pDC maturation as determined by cytokine induction, CCR7 and co-stimulatory marker expression and prolonging viability.  相似文献   

6.
The structure of IFN-alpha receptor was studied by 1) developing antibodies against the receptor, and 2) screening a number of cell lines by affinity cross-linking to identify cells that express different IFN-alpha 2 receptor structures. We report that two different patterns of IFN-alpha 2 receptor are observed in human cells of hematopoietic origin. The predominant form of the IFN-alpha receptor is a multichain structure in which IFN-alpha 2 forms complexes of 110 and 130 kDa (alpha-subunit). A high Mr complex of 210 kDa results from the association of alpha-subunit and other receptor components. In contrast, another form of the receptor has been identified in the IFN-alpha-resistant U-937 cell line and in some cases of acute leukemia. This form of the IFN-alpha receptor is characterized by the presence of the alpha- subunit, and the absence of the 110- and 210-kDa bands. Also a novel 180-kDa complex and a more prominent 75-kDa band are observed. Functional studies performed in U-937 cells showed that this cell line is not only partially resistant to the antiproliferative and antiviral effects of IFN-alpha, but also fails to down-regulate the alpha-subunit of the IFN-alpha receptor upon IFN-alpha binding.  相似文献   

7.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

8.
L Bush  T J McGahan    H B White  rd 《The Biochemical journal》1988,256(3):797-805
BBP-II, the major biotin-binding protein from chicken oocytes, was purified 12,000-fold with a 22% yield. The purification procedure includes butan-1-ol extraction of yolk lipids, phosphocellulose chromatography of the water-soluble proteins, DEAE-cellulose chromatography at pH 7.4 and hydroxyapatite column chromatography. Final purification was obtained by using a second DEAE-cellulose column chromatography at pH 6.0. BBP-I activity separated from BBP-II activity during elution from the first DEAE-cellulose column. Purified BBP-II was homogeneous on both polyacrylamide-gel electrophoresis and SDS/polyacrylamide-gel electrophoresis under conditions that would detect a 1% impurity. The subunit Mr determined from SDS/polyacrylamide-gel electrophoresis was 18,200 (72,600 for tetramer), which compares favourably with an Mr value of 17,300 (69,100) calculated from the amino acid analysis. A single precipitin line formed when rabbit antiserum to the protein was directed against a crude chicken egg-yolk sample. BBP-II purified by this procedure lacked carbohydrate and phosphate, was stable indefinitely when frozen, and was quite stable at room temperature. The N-terminal amino acid sequence showed polymorphism at three positions in the first 23 residues and was about 45% identical with the N-terminal 22 residues of avidin. Antiserum to BBP-II cross-reacted with BBP-I and similar proteins in the yolk of eggs from various birds and alligator as judged by immunodiffusion and enzyme-linked immunosorbent assays. No cross-reaction was observed with chicken egg-white by either of these methods.  相似文献   

9.
10.
Human ras GTPase-activating protein (GAP) is a cytoplasmic factor that stimulates the GTPase activity of normal N-ras p21 while having no stimulatory effect on the GTPase activity of oncogenic variants of N-ras p21. We have purified two forms of native ras GAP from human placental tissue. In addition to the Mr = 120,000 type I GAP reported previously (1), an equivalent amount of an Mr = 95,000 molecule with GAP activity was recovered and shown to have the N-terminal sequence expected for type II GAP. The two GAP forms in placental extracts were resolved by molecular sieve chromatography and appeared to have a monomeric native structure. Human recombinant type I GAP was produced intracellularly in Sf9 insect cells using a baculovirus expression vector, and 10-mg quantities were purified to homogeneity in three steps. Comparison of the purified native and recombinant GAP molecules revealed that all three displayed similar biological specific activities in an in vitro GAP assay. A polyclonal antibody to purified recombinant GAP was prepared and shown to neutralize the activity of both native and recombinant GAPs. The antibody was also highly specific for the detection of native GAP by Western blot. Type I and II GAP species were detected in approximately equal amounts in cytoplasmic extracts of human placenta, but only type I GAP was observed when other human tissues were examined.  相似文献   

11.
The enzyme responsible for 15-lipoxygenation of arachidonic acid was purified to homogeneity from human eosinophil-enriched leukocytes using a combination of ammonium sulfate precipitation, hydrophobic interaction chromatography, and high pressure liquid chromatography on hydroxyapatite and cation-exchange columns. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein revealed a single major band (apparent Mr 70,000). Amino acid sequence analysis yielded a single N-terminal sequence. Comparison of the N-terminal 15 residues reveals 71% sequence identity to the rabbit reticulocyte lipoxygenase and 36% sequence identity to the rat basophilic leukemia 5-lipoxygenase. In contrast, sequence identity to the soybean lipoxygenase-1 is not observed. These results demonstrate that human 15-lipoxygenase can be isolated from eosinophil-enriched leukocytes and is accessible for direct sequence analysis. Furthermore, we present initial evidence that the mammalian lipoxygenases constitute an homologous family of enzymes. The availability of homogeneous human 15-lipoxygenase will play a key role in elucidating other relationships in this family of enzymes.  相似文献   

12.
The induction of phosphorylation of both protein P1 and protein synthesis initiation factor eIF-2 alpha and the inhibition of virus replication were examined in mouse L929 fibroblasts treated with either natural mouse or individual cloned human interferons (IFN). Natural mouse IFN synthesized in Newcastle disease virus-induced L929 cells and two cloned human leukocyte IFN subspecies synthesized in Escherichia coli, IFN-alpha D and IFN-alpha A/D, possessed antiviral activity in L929 cells as measured by single cycle virus yield reduction with both vesicular stomatitis virus and reovirus. Natural L929 IFN and cloned IFNs, alpha D and alpha A/D, also induced the protein kinase that catalyzed the phosphorylation of endogenous ribosome-associated protein P1 and the alpha subunit of purified initiation factor eIF-2. Two other cloned human IFNs, alpha A and alpha D/A, were poor inducers of both the antiviral state and the phosphorylation of P1 and eIF-2 alpha in mouse L929 cells. The ability of individual human IFN-alpha subspecies to induce P1 and eIF-2 alpha phosphorylation in mouse L929 cells correlated with their ability to induce an antiviral state. Furthermore, the detailed kinetics of induction, in mouse L929 cells, of P1 and eIF-2 alpha phosphorylation and of the antiviral state by the heterologous cloned human IFN-alpha A/D were equivalent to the kinetics of induction by the homologous natural mouse L929 IFN. These results suggest that different subspecies of biologically active IFN induce equivalent antiviral activities and biochemical changes in mouse L929 cells, and that protein phosphorylation may play a major role in the antiviral mechanism of IFN action in mouse L929 fibroblasts.  相似文献   

13.
A protective Mr28K antigen of Schistosoma mansoni, expressed from its cDNA, has been purified in a single step and shown to possess glutathione (GSH) transferase activity as predicted from sequence homologies with two mammalian GSH transferase multigene families. It is notable for its high 1-chloro-2,4-dinitrobenzene GSH transferase and linoleic acid hydroperoxide GSH peroxidase activities. The major GSH transferase of S. mansoni has been purified and its subunit is identical to this Mr28K antigen by criteria of Mr, immunochemistry, substrate specificity and peptide sequence analysis. In the parasite, the antigen is present in the tegument, protonephridial cells and subtegumental parenchymal cells. No significant immunological cross-reactivity between the S.mansoni and mammalian (human and rat) GSH transferases was observed.  相似文献   

14.
The antiviral and antiproliferative effects of highly purified Escherichia coli-derived human interferons (IFNs) were examined in human melanoma cells (Hs294T). Antiproliferative activity was monitored by measuring inhibition of cell multiplication, and antiviral activity was determined by inhibition of herpes simplex virus type 1 replication. Treatment of cells with IFN-gamma in combination with IFN-alpha A or IFN-beta 1 resulted in potentiation of both antiproliferative and antiviral activities. In contrast, combination treatments composed of IFN-alpha A and IFN beta 1 yielded inconsistent results. Some combinations reflected additive responses, whereas others were antagonistic. To examine correlations between IFN-induced biological activities and interactions of the different IFNs with cell surface receptors, in vivo [35S]methionine-labeled IFN-alpha A was prepared. Binding studies indicated the presence of 2,980 +/- 170 receptors per cell, each with an apparent Kd of (8.4 +/- 1.3) X 10(-11) M. Results from competitive binding studies suggested that Hs294T cells possess at least two types of IFN receptors: one which binds IFN-alpha A and IFN-beta 1 and another to which IFN-gamma binds.  相似文献   

15.
The human protein p78 is induced and accumulated in cells treated with type I interferon or with some viruses. It is the human homolog of the mouse Mx protein involved in resistance to influenza virus. A full-length cDNA clone encoding the human p78 protein was cloned and sequenced. It contained an open reading frame of 662 amino acids, corresponding to a polypeptide with a predicted molecular weight of 75,500, in good agreement with the Mr of 78,000 determined on sodium dodecyl sulfate gels for the purified natural p78 protein. The cloned gene was expressed in vitro and corresponded in size, pI, antigenic determinant(s), and NH2 terminus sequence to the natural p78 protein. A second cDNA was cloned which encoded a 633-amino-acid protein sharing 63% homology with human p78. This p78-related protein was translated in reticulocyte lysates where it shared an antigenic determinant(s) with p78. A putative 5' regulatory region of 83 base pairs contained within the gene promoter region upstream of the presumed p78 mRNA cap site conferred human alpha interferon (IFN-alpha) inducibility to the cat reporter gene. The p78 protein accumulated to high levels in cells treated with IFN-alpha. In contrast, the p78-related protein was not expressed at detectable levels. The rate of decay of p78 levels in diploid cells after a 24-h treatment with IFN-alpha was much slower than the rate of decay of the antiviral state against influenza A virus and vesicular stomatitis virus, suggesting that the p78 protein is probably not involved in an antiviral mechanism. Furthermore, we showed that these proteins, as well as the homologous mouse Mx protein, possess three consensus elements in proper spacing, characteristic of GTP-binding proteins.  相似文献   

16.
17.
Minicells from Escherichia coli DS410 harboring cDNA for human interferon (IFN) alpha 1 or alpha 2 were metabolically labeled with [3H]leucine and the radioactive IFN was purified to homogeneity by immune precipitation with anti-IFN-alpha serum. These preparations of radioactive IFN-alpha 1 and -alpha 2 were used to study the binding on two human (FL and Daudi) and one bovine (MDBK) cell lines. IFN-alpha 2 specifically bound well to both human and bovine cells, while IFN-alpha 1 bound very poorly to human cells but well to bovine cells. Specific binding of radioactive IFN-alpha 2 to these cell lines was completely inhibited by not only nonradioactive IFN-alpha 2 but also IFN-alpha 1, and binding of IFN-alpha 1 to bovine cell was also competed by IFN-alpha 2 as well as IFN-alpha 1, indicating that the receptors for both IFNs are identical. However, 50-100-fold (on human cells) or 4-fold (on bovine cell) more nonradioactive IFN-alpha 1 than -alpha 2 was required to inhibit the binding of radioactive IFN-alpha 2 to the receptors. Scatchard analysis showed that IFN-alpha 1 and -alpha 2 bind to the receptors on human cells with an apparent Kd of greater than 6 X 10(-10) and 3 X 10(-11) M, respectively, while on bovine cells with a Kd of 4.2 X 10(-11) and 1.6 X 10(-11) M, respectively. These results show that the different target cell specificity of IFN-alpha 1 and -alpha 2 in regard to antiviral activity (Streuli, M., Hall, A., Boll, W., Stewart, W. E., II, Nagata, S., and Weissmann, C. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 2848-2852) is due to the different binding activity of IFN-alpha molecules to their common receptors.  相似文献   

18.
Coxsackie B3 virus (CVB3) is the most significant pathogen causing myocarditis in humans, and antiviral therapy would be most effective in the early stages of the disease. Here we provide evidence that BW001, a C-type CpG oligodeoxynucleotide, induces anti-CVB3 activity in human peripheral blood mononuclear cells (PBMCs). In parallel, we have demonstrated that BW001 induces human PBMCs to express mRNAs of multiple types of interferon (IFN), including IFN-alpha, IFN-beta, IFN-omega and IFN-gamma, and to express mRNAs of at least 11 subtypes of IFN-alpha. The induced IFNs may contribute to the anti-CVB3 activity. The results suggest that BW001 could be developed into a medication with the potential to treat CVB3 infectious diseases by inducing natural mixed IFNs.  相似文献   

19.
Human neutrophil elastase from normal donors has been purified using an isolation procedure which included sequential sodium chloride extraction, Aprotinin-Sepharose affinity chromatography, CM-cellulose ion-exchange chromatography, and AcA44 gel filtration chromatography. The inclusion of this last purification step was crucial for separating inactive lower molecular weight species from the active forms of neutrophil elastase and resulted in a higher specific activity of the final preparation. Sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis of the reduced purified protein demonstrated three polypeptides of Mr 31,000, 28,000, and 27,500. Four polypeptides were resolved on acid gel electrophoresis; each of the four possessed amidolytic activity. Furthermore, peptide analysis of Staphylococcus aureus V8 protease digests indicated that these polypeptides are structurally related to each other and represent microheterogeneity of the purified protein. The apparent isoelectric points of these four forms as determined by two-dimensional electrophoresis range from 6.1 to 6.7. By utilizing microsequencing techniques, the first 40 residues of neutrophil elastase have been determined and compared with the reported sequence of elastase isolated from leukemic myeloid cells. In addition, a high degree of homology was found within the amino-terminal regions of neutrophil elastase and the serine proteinases porcine elastase, bovine chymotrypsin, human factor D, and the beta chain of plasmin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号