首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overall association and dissociation rate constants were measured at 20 degrees C for O2, CO, and alkyl isocyanide binding to position 45 (CD3) mutants of pig and sperm whale myoglobins and to sperm whale myoglobin reconstituted with protoheme IX dimethyl ester. In pig myoglobin, Lys45(CD3) was replaced with Arg, His, Ser, and Glu; in sperm whale myoglobin, Arg45(CD3) was replaced with Ser and Gly. Intramolecular rebinding of NO, O2, and methyl isocyanide to Arg45, Ser45, Glu45, and Lys45(native) pig myoglobins was measured following 35-ps and 17-ns excitation pulses. The shorter, picosecond laser flash was used to examine ligand recombination from photochemically produced contact pairs, and the longer, nanosecond flash was used to measure the rebinding of ligands farther removed from the iron atom. Mutations at position 45 or esterification of the heme did not change significantly (less than or equal to 2-fold) the overall association rate constants for NO, CO, and O2 binding at room temperature. These data demonstrate unequivocally that Lys(Arg)45 makes little contribution to the outer kinetic barrier for the entry of diatomic gases into the distal pocket of myoglobin, a result that contradicts a variety of previous structural and theoretical interpretations. However, the rates of geminate recombination of NO and O2 and the affinity of myoglobin for O2 were dependent upon the basicity of residue 45. The series of substitutions Arg45, Lys45, Ser45, and Glu45 in pig myoglobin led to a 3-fold decrease in the initial rate for the intramolecular, picosecond rebinding of NO and 4-fold decrease in the geminate rate constant for the nanosecond rebinding of O2. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Myoglobin structure and regulation of solvent accessibility of heme pocket   总被引:1,自引:0,他引:1  
The effects of heme removal on the molecular structure of tuna and sperm whale myoglobin have been investigated by comparing the solvent accessibility to the heme pocket of the two proteins with that of the corresponding apoproteins. Although the heme microenvironment of tuna myoglobin is more polar than that of sperm whale myoglobin, the accessibility of solvent to heme is identical in the two proteins as revealed by thermal perturbation of Soret absorption. The removal of heme produces loss of helical folding and increase of solvent accessibility but the effects are rather different for the two proteins. More precisely, the loss of helical structure upon heme removal is 50% for tuna myoglobin and 15% for sperm whale myoglobin; moreover, the solvent accessibility of the heme pocket of tuna apomyoglobin is 2-3-fold greater than that of sperm whale apomyoglobin. These results have been explained in terms of the lack of helical folding in segment D, the structural organization of which may have a relevant effect in regulating the accessibility of ligands to the heme. The effects produced by charged quenchers reveal that the ligand path from the surface of the molecule to the ion atom of the heme involves a positively charged residue which may reasonably be identified as Arg-45 (sperm whale myoglobin) or Lys-41 (tuna myoglobin) on the basis of recent X-ray crystallographic information.  相似文献   

3.
The X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin has been solved and refined at 2.0 A resolution; the crystallographic R-factor is 13.6%. The fluoride ion binds to the sixth co-ordination position of the heme iron, 2.2 A from the metal. Binding of the negatively charged ligand on the distal side of the heme pocket of this myoglobin, which lacks the distal His, is associated with a network of hydrogen bonds that includes the fluoride ion, the residue Arg66 (E10), the heme propionate III, three ordered water molecules and backbone or side-chain atoms from the CD region. A comparison of fluoride and oxygen dissociation rate constants of A. limacina myoglobin, sperm whale (Physeter catodon) myoglobin and Glycera dibranchiata monomeric hemoglobin, suggests that the conformational readjustment of Arg66 (E10) in A. limacina myoglobin may represent the molecular basis for ligand stabilization, in the absence of a hydrogen-bond donor residue at the distal E7 position.  相似文献   

4.
The met-cyano complex of elephant myoglobin has been investigated by high field 1H NMR spectroscopy, with special emphasis on the use of exchangeable proton resonances in the heme cavity to obtain structural information on the distal glutamine. Analysis of the distance dependence of relaxation rates and the exchange behavior of the four hyperfine shifted labile proton resonances has led to the assignment of the proximal His-F8 ring and peptide NHs and the His-FG3 ring NH and the distal Gln-E7 amide NH. The similar hyperfine shift patterns for both the apparent heme resonances as well as the labile proton peaks of conserved resonances in elephant and sperm whale met-cyano myoglobins support very similar electronic/molecular structures for their heme cavities. The essentially identical dipolar shifts and dipolar relaxation times for the distal Gln-E7 side chain NH and the distal His-E7 ring NH in sperm whale myoglobin indicate that those labile protons occupy the same geometrical position relative to the iron and heme plane. This geometry is consistent with the distal residue hydrogen bonding to the coordinated ligand. The similar rates and identical mechanisms of exchange with bulk water of the labile protons for the three conserved residues in the elephant and sperm whale heme cavity indicate that the dynamic stability of the proximal side of the heme pocket is unaltered upon the substitution (His----Gln). The much slower exchange rate (by greater than 10(4] of the distal NH in elephant relative to sperm whale myoglobin supports the assignment of the resonance to the intrinsically less labile amide side chain.  相似文献   

5.
The X-ray crystal structure of the ferric sperm whale (Physeter catodon) myoglobin:imidazole complex has been refined at 2.0 A resolution, to a final R-factor of 14.8%. The overall conformation of the protein is little affected by binding of the ligand. Imidazole is co-ordinated to the heme iron at the distal site, and forces distinguishable local changes in the surrounding protein residues. His64(E7) swings out of the distal pocket and becomes substantially exposed to the solvent: nevertheless, it stabilizes the exogenous ligand by hydrogen bonding. The side-chains of residues Arg45(CD3) and Asp60(E3) are also affected by imidazole association.  相似文献   

6.
L P Yu  G N La Mar  H Mizukami 《Biochemistry》1990,29(10):2578-2585
Two-dimensional 1H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO2). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO2 resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The C zeta H proton of the Phe CD4 was found to move toward the iron of the heme by approximately 4 A relative to the position of sperm whale MbCO, requiring minimally a 3-A movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His----Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties.  相似文献   

7.
The role of the proximal heme iron ligand in activation of hydrogen peroxide and control of spin state and coordination number in heme proteins is not yet well understood. Although there are several examples of amino acid sidechains with oxygen atoms which can act as potential heme iron ligands, the occurrence of protein-derived oxygen donor ligation in natural protein systems is quite rare. The sperm whale myoglobin cavity mutant H93G Mb (D. Barrick, Biochemistry 33 (1994) 6546) has its proximal histidine ligand replaced by glycine, a mutation which leaves an open cavity capable of accommodation of a variety of unnatural potential proximal ligands. This provides a convenient system for studying ligand-protein interactions. Molecular modeling of the proximal cavity in the active site of H93G Mb indicates that the cavity is of sufficient size to accommodate benzoate and phenolate in conformations that allow their oxygen atoms to come within binding distance of the heme iron. In addition, benzoate may occupy the cavity in an orientation which allows one carboxylate oxygen atom to ligate to the heme iron while the other carboxylate oxygen is within hydrogen bonding distance of serine 92. The ferric phenolate and benzoate complexes have been prepared and characterized by UV-visible and MCD spectroscopies. The benzoate adduct shows characteristics of a six-coordinate high-spin complex. To our knowledge, this is the first known example of a six-coordinate high-spin heme complex with an anionic oxygen donor proximal ligand. The benzoate ligand is displaced at alkaline pH and upon reaction with hydrogen peroxide. The phenolate adduct of H93G Mb is a five-coordinate high-spin complex whose UV-visible and MCD spectra are distinct from those of the histidine 93 to tyrosine (H93Y Mb) mutant of sperm whale myoglobin. The phenolate adduct is stable at alkaline pH and exhibits a reduced reactivity with hydrogen peroxide relative to that of both native ferric myoglobin, and the exogenous ligand-free derivative of ferric H93G Mb. These observations indicate that the identity of the proximal oxygen donor ligand has an important influence on both the heme iron coordination number and the reactivity of the complex with hydrogen peroxide.  相似文献   

8.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

9.
The effects of mutagenesis on geminate and bimolecular O2 rebinding to 90 mutants at 27 different positions were used to map pathways for ligand movement into and out of sperm whale myoglobin. By analogy to a baseball glove, the protein "catches" and then "holds" incoming ligand molecules long enough to allow bond formation with the iron atom. Opening of the glove occurs by outward movements of the distal histidine (His(64)), and the ligands are trapped in the interior "webbing" of the distal pocket, in the space surrounded by Ile(28), Leu(29), Leu(32), Val(68), and Ile(107). The size of this pocket is a major determinant of the rate of ligand entry into the protein. Immediately after photo- or thermal dissociation, O2 moves away from the iron into this interior pocket. The majority of the dissociated ligands return to the active site and either rebind to the iron atom or escape through the His(64) gate. A fraction of the ligands migrate further away from the heme group into cavities that have been defined as Xe binding sites 4 and 1; however, most of these ligands also return to the distal pocket, and net escape through the interior of wild-type myoglobin is <20-25%.  相似文献   

10.
Knapp JE  Bonham MA  Gibson QH  Nichols JC  Royer WE 《Biochemistry》2005,44(44):14419-14430
Residue F4 (Phe 97) undergoes the most dramatic ligand-linked transition in Scapharca dimeric hemoglobin, with its packing in the heme pocket in the unliganded (T) state suggested to be a primary determinant of its low affinity. Mutation of Phe 97 to Leu (previously reported), Val, and Tyr increases oxygen affinity from 8- to 100-fold over that of the wild type. The crystal structures of F97L and F97V show side chain packing in the heme pocket for both R and T state structures. In contrast, in the highest-affinity mutation, F97Y, the tyrosine side chain remains in the interface (high-affinity conformation) even in the unliganded state. Comparison of these mutations reveals a correlation between side chain packing in the heme pocket and oxygen affinity, indicating that greater mass in the heme pocket lowers oxygen affinity due to impaired movement of the heme iron into the heme plane. The results indicate that a key hydrogen bond, previously hypothesized to have a central role in regulation of oxygen affinity, plays at most only a small role in dictating ligand affinity. Equivalent mutations in sperm whale myoglobin alter ligand affinity by only 5-fold. The dramatically different responses to mutations at the F4 position result from subtle, but functionally critical, stereochemical differences. In myoglobin, an eclipsed orientation of the proximal His relative to the A and C pyrrole nitrogen atoms provides a significant barrier for high-affinity ligand binding. In contrast, the staggered orientation of the proximal histidine found in liganded HbI renders its ligand affinity much more susceptible to packing contacts between F4 and the heme group. These results highlight very different strategies used by cooperative hemoglobins in molluscs and mammals to control ligand affinity by modulation of the stereochemistry on the proximal side of the heme.  相似文献   

11.
Six 90-ps molecular dynamics trajectories, two for each of three distal mutants of sperm whale carbonmonoxy myoglobin, are reported; solvent waters within 16 A of the active site have been included. In both His64GIn trajectories, the distal side chain remains part of the heme pocket, forming a "closed" conformation similar to that of the wild type 64N delta H tautomer. Despite a connectivity more closely resembling the N epsilon H histidine tautomer, close interactions with the carbonyl ligand similar to those observed for the wild type 64N epsilon H tautomer are prevented in this mutant by repulsive interactions between the carbonyl O and the 64O epsilon. The aliphatic distal side chain of the His64Leu mutant shows little interaction with the carbonyl ligand in either His64Leu trajectory. Solvent water molecules move into and out of the active site in the His64Gly mutant trajectories; during all the other carbonmonoxy myoglobin trajectories, including the wild type distal tautomers considered in an earlier work, solvent molecules rarely encroach closer than 6 A of the active site. These results are consistent with a recent structural interpretation of the wild type infrared spectrum, and the current reinterpretation that the distal-ligand interaction in carbonmonoxy myoglobin is largely electrostatic, not steric, in nature.  相似文献   

12.
Examination was made of CO binding reactions to four kinds of modified sperm whale myoglobin (Mb), whose heme was reconstituted by iron complexes of synthetic porphyrins such as porphine (Por), meso-tetramethylporphyrin (TMeP), meso-tetraethylporphyrin (TEtP) and meso-tetra(n-propyl)porphyrin (TnPrP), using flash photolysis and stopped-flow methods. The CO association rate was found to be 5- to 20-times and dissociation rate 10- to 36-times accelerated by replacement with synthetic hemes. These features could be explained based on characteristic structures of modified Mbs indicated by X-ray crystallography. The side chain of Arg-45 protruded from the heme vicinity into the solvent region and heme was tilted by interactions of meso-alkyl side chains with surrounding peptides, resulting in the formation of widely opened channels and pockets for ligand passage. These structural features indicate the CO ligand to more easily enter or exit from heme pockets of reconstituted myoglobins, compared to native Mb.  相似文献   

13.
Makino M  Sawai H  Shiro Y  Sugimoto H 《Proteins》2011,79(4):1143-1153
Cytoglobin (Cgb) is a vertebrate heme‐containing globin‐protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa‐coordinated (bis‐hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD‐corner and D‐helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa‐coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta‐coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand‐binding properties of Cgb. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

15.
The pH dependence of the proton NMR chemical shifts of met-cyano and deoxy forms of native and reconstituted myoglobins reflects a structural transition in the heme pocket modulated by a single proton with pK 5.1-5.6. Comparison of this pH dependence of sperm whale and elephant myoglobin and that of the former protein reconstituted with esterified hemin eliminates both the distal histidine as well as the heme propionates as the titrating residue. Reconstitution of sperm whale met-cyano myoglobin with hemin modified at the 2,4-positions leads to a systematic variation in the pK for the structural transition, thus indicating the presence of a coupling between the titrating group and the heme pi system. The results are consistent with histidine FG3 (His-FG3) being the titrating group, and a donor-acceptor pi-pi interaction between its imidazole and the heme is proposed.  相似文献   

16.
The structure of horse heart metmyoglobin has been determined with a molecular replacement approach and subsequently refined using rigid body and restrained-parameter least squares methods to a conventional crystallographic R-factor of 0.16 for all observed reflections in the 6.0-2.8-A resolution range. The polypeptide chain of this protein is found to be organized into eight helical regions (labeled A-H) which collectively form a hydrophobic pocket in which the heme prosthetic group is bound. Our results show that the overall thermal motions of individual residues of horse heart metmyoglobin are correlated with their mean distances from the heme group. In comparisons with the structure of sperm whale metmyoglobin it has been found that horse heart metmyoglobin has unique polypeptide chain conformations in four regions. These include residues in the immediate vicinity of the amino and carboxyl termini, residues about Lys-16, and residues 117-124 which are in the interhelical region between helices G and H. Many of these conformational changes appear to occur as a consequence of a different pattern of salt-bridging interactions between charged residues on the surface of horse heart metmyoglobin. The overall average positional deviation observed between corresponding alpha-carbons in the polypeptide chains of horse heart and sperm whale metmyoglobin is 0.50 A. This value for atoms of the porphyrin core of the central heme group is 0.39 A. A total of 12 well defined water molecules and 1 sulfate ion are included in the current structural model of horse heart metmyoglobin. One of these water molecules is found to be coordinated to the heme iron atom and hydrogen bonded to the side chain of His-64. The sulfate ion is hydrogen bonded to amide groups at the amino-terminal end of the E-helix and, as well, forms similar interactions with the amino-terminal end of the D-helix of an adjacent protein molecule in the crystalline lattice.  相似文献   

17.
Native oxymyoglobin (MbO2) was isolated directly from the skeletal muscle of bigeye tuna (Thunnus obesus) with complete separation from metmyoglobin (metMb) on a CM-cellulose column. It was examined for its stability properties over a wide range of pH values (pH 5-12) in 0.1 M buffer at 25 degrees C. When compared with sperm whale MbO2 as a reference, the tuna MbO2 was found to be much more susceptible to autoxidation. Kinetic analysis has revealed that the rate constant for a nucleophilic displacement of O2- from MbO2 by an entering water molecule is 10-times higher than the corresponding value for sperm whale MbO2. The magnitude of the circular dichroism of bigeye tuna myoglobin at 222 nm was comparable to that of sperm whale myoglobin, but its hydropathy profile revealed the region corresponding to the distal side of the heme iron to be apparently less hydrophobic. The kinetic simulation also demonstrated that accessibility of the solvent water molecule to the heme pocket is clearly a key factor in the stability properties of the bound dioxygen.  相似文献   

18.
The time course of ligand recombination to the myoglobin from Aplysia limacina, which has Val(E7), was measured following photolysis by flashes of 35 ps to 300 ns with a time resolution of 10 ps or 1 ns. CO shows only biomolecular recombination. O2 has a small geminate reaction with a half-time of tens of picoseconds, but no nanosecond geminate reaction. NO has two picosecond relaxations with half-times of 70 ps (15%) and 1 ns (80%) and one nanosecond relaxation with a half-time of 4.6 ns. The biomolecular rates for O2 and NO are the same: 2 x 10(7) M-1 s-1. Methyl and ethyl isonitriles have a geminate reaction with a half-time of 35 ps. Ethyl isonitrile has, in addition, a nanosecond relaxation (25%) with a half-time of 100 ns. t-Butyl isonitrile has four geminate relaxations (10 ps, 35 ps, 1 ns, and 1 microseconds). Analysis of the results suggests much easier movement of ligand between the heme pocket and the exterior than in sperm whale myoglobin (His(E7]. The reactivity of the heme is little different, placing the effect of the differences from sperm whale myoglobin on the distal side of the heme.  相似文献   

19.
The kinetics of methyl-, ethyl-, iso-propyl-, and ter-butyl-isocyanide binding to Aplysia limacina myoglobin (distal His----Lys) and the isolated beta chains from hemoglobin Zurich (distal His----Arg) have been investigated by flash photolysis at various temperatures above 0 degrees C. Sperm whale (Physter catodon) myoglobin and the isolated beta chains from normal adult hemoglobin have been used as references. In most reaction systems investigated the apparent extent of photolysis increases with temperature. For sperm whale myoglobin and the normal beta chains the increase is of the same magnitude and not correlated to the type of ligand used. On the contrary, for the two proteins lacking the distal histidine, the phenomenon is dependent on the size of the alkyl side chain of the ligand. The results, analyzed on the basis of the multibarrier model (Austin, R.H., K.W. Beeson, L. Eisenstein, H. Frauenfelder, and I.C. Gunsalus, 1975, Biochemistry, 16:5355-5373), suggest that the partition of the ligand molecules between the solvent and the heme pocket, occurring during the photolysis process, is primarily determined by interactions between the ligand and residues in the heme cavity rather than by diffusion through the protein matrix.  相似文献   

20.
The structure of carbon-monoxy (Fe II) myoglobin at 260 K has been solved at a resolution of 1.5 A by X-ray diffraction and a model refined against the X-ray data by restrained least-squares. The CO ligand is disordered and distorted from the linear conformation seen in model compounds. At least two conformations, with Fe--C--O angles of 140 degrees and 120 degrees, are required to model the system. The heme pocket is significantly larger than in deoxy-myoglobin because the distal residues have relaxed around the ligand; the largest displacement occurs for the distal histidine side-chain, which moves more than 1.4 A on ligand binding. The side-chain of Arg45 (CD3) is disordered and apparently exists in two equally populated conformations. One of these does not block the motion of the distal histidine out of the binding pocket, suggesting a mechanism for ligand entry. The heme group is planar (root-mean-square deviation from planarity is 0.08 A) with no doming of the pyrrole groups. The Fe--N epsilon 2 (His93) bond length is 2.2 A and the Fe--C bond length in the CO complex is 1.9 A. The iron is the least-squares plane of the heme, and this leads to the proximal histidine moving by 0.4 A relative to its position in deoxy-myoglobin. This shift correlates with a global structural change, with the proximal part of the molecule translated towards the heme plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号