首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

2.
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.  相似文献   

3.
Many enzymes use metal ions within their active sites to achieve enormous rate acceleration. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). The three-dimensional arrangement determined by X-ray crystallography provides a powerful starting point for identifying ground state interactions, but only functional studies can establish and interrogate transition state interactions. The Tetrahymena group I ribozyme is a paradigm for the study of RNA catalysis, and previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified catalytic metal ions making five contacts with the substrate atoms. Here, we have combined atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to establish transition state ligands on the ribozyme for one of the catalytic metal ions, referred to as M A. We identified the pro-S P oxygen atoms at nucleotides C208, A304, and A306 as ground state ligands for M A, verifying interactions suggested by the Azoarcus crystal structures. We further established that these interactions are present in the chemical transition state, a conclusion that requires functional studies, such as those carried out herein. Elucidating these active site connections is a crucial step toward an in-depth understanding of how specific structural features of the group I intron lead to catalysis.  相似文献   

4.
Although the Hammerhead ribozyme (HHRz) has long been used as a model system in the field of ribozyme enzymology, several details of its mechanism are still not well understood. In particular, significant questions remain concerning the disposition and role of catalytic metals in the HHRz. Previous metal-rescue experiments using a "minimal" HHRz resulted in prediction of a catalytic metal that is bound in the A9/G10.1 site in the ground state of the reaction and that bridges to the scissile phosphate further along the reaction pathway. "Native" or extended HHRz constructs contain tertiary contacts that stabilize a more compact structure at moderate ionic strength. We performed Cd(2+) rescue experiments on an extended HHRz from Schistosoma mansoni using stereo-pure scissile phosphorothioate-substituted substrates in order to determine whether a metal ion makes contact with the scissile phosphate in the ground state or further along the reaction coordinate. Inhibition in Ca(2+)/Mg(2+) and rescue by thiophilic Cd(2+) was specific for the R(p)-S stereoisomer of the scissile phosphate. The affinity of the rescuing Cd(2+), measured in two different ionic strength backgrounds, increased fourfold to 17-fold when the pro-R(p) oxygen is replaced by sulfur. These data support a model in which the rescuing metal ion makes a ground-state interaction with the scissile phosphate in the native HHRz. The resulting model for Mg(2+) activation in the HHRz places a metal ion in contact with the scissile phosphate, where it may provide ground-state electrostatic activation of the substrate.  相似文献   

5.
Maderia M  Hunsicker LM  DeRose VJ 《Biochemistry》2000,39(40):12113-12120
The hammerhead ribozyme is a catalytic RNA that requires divalent metal cations for activity under moderate ionic strength. Two important sites that are proposed to bind metal ions in the hammerhead ribozyme are the A9/G10.1 site, located at the junction between stem II and the conserved core, and the scissile phosphate (P1.1). (31)P NMR spectroscopy in conjunction with phosphorothioate substitutions is used in this study to investigate these putative metal sites. The (31)P NMR feature of a phosphorothioate appears in a unique spectral window and can be monitored for changes upon addition of metals. Addition of 1-2 equiv of Cd(2+) to the hammerhead with an A9-S(Rp) or A9-S(S)(Rp) substitution results in a 2-3 ppm upfield shift of the (31)P NMR resonance. In contrast, the P1.1-S(Rp) and P1.1-S(Sp) (31)P NMR features shift slightly and in opposite directions, with a total change in delta of 相似文献   

6.
The Tetrahymena ribozyme is a metalloenzyme that catalyzes cleavage of oligonucleotide substrates by phosphoryl transfer. Thiophilic metal ions such as Mn2+, Zn2+ or Cd2+ rescue the >10(3)-fold inhibitory effect of sulfur substitution of the 3'-oxygen leaving group but do not effectively rescue the effect of sulfur substitution of the nonbridging pro-Sp phosphoryl oxygen. We now show that the latter effect can be fully rescued by Zn2+ or Cd2+ using a phosphorodithioate substrate, in which both the 3'-oxygen and the pro-Sp oxygen are simultaneously substituted with sulfur. These results provide the first functional evidence that metallophosphotransferases can mediate catalysis via metal ion coordination to both the leaving group and a nonbridging oxygen of the scissile phosphate.  相似文献   

7.
The ribonuclease P ribozyme (RNase P RNA), like other large ribozymes, requires magnesium ions for folding and catalytic function; however, specific sites of metal ion coordination in RNase P RNA are not well defined. To identify and characterize individual nucleotide functional groups in the RNase P ribozyme that participate in catalytic function, we employed self-cleaving ribozyme-substrate conjugates that facilitate measurement of the effects of individual functional group modifications. The self-cleavage rates and pH dependence of two different ribozyme-substrate conjugates were determined and found to be similar to the single turnover kinetics of the native ribozyme. Using site-specific phosphorothioate substitutions, we provide evidence for metal ion coordination at the pro-Rp phosphate oxygen of A67, in the highly conserved helix P4, that was previously suggested by modification-interference experiments. In addition, we detect a new metal ion coordination site at the pro-Sp phosphate oxygen of A67. These findings, in combination with the proximity of A67 to the pre-tRNA cleavage site, support the conclusion that an important role of helix P4 in the RNase P ribozyme is to position divalent metal ions that are required for catalysis.  相似文献   

8.
To understand the behavior of group I introns on a biologically fundamental level, we must distinguish those traits that arise as the products of natural selection (selected traits) from those that arise as the products of neutral drift (non-selected traits). In practice, this distinction relies on comparing the similarities and differences among widely divergent introns to identify conserved traits. Here we address whether the strategies used by the eukaryotic group I intron from the Tetrahymena ciliate to stabilize the leaving group during splicing are maintained in the group I intron from the widely divergent Azoarcus bacterium. A substrate analogue containing a 3'-phosphorothiolate linkage, in which a sulfur atom replaces the bridging 3'-oxygen atom of the scissile phosphate, reacts 20-fold slower in the Azoarcus reaction than the corresponding unmodified substrate in the presence of Mg(II) as the only divalent cation. However, Mn(II) relieves this negative effect such that the 3'-S-P bond cleaves 21-fold faster than does the 3'O-P bond. Other thiophilic divalent metal ions such as Co(II), Cd(II), and Zn(II) similarly support cleavage of the S-P bond. These results indicate that a metal ion directly coordinates to the leaving group in the transition state of the Azoarcus ribozyme reaction. Additionally, the 3'-sulfur substitution eliminates the approximately 10(3)-fold contribution of the adjacent 2'-OH to transition state stabilization. Considering that sulfur accepts hydrogen bonds weakly compared to oxygen, this result suggests that the 2'-OH contributes to catalysis by donating a hydrogen bond to the 3'-oxygen leaving group in the transition state, presumably acting in conjunction with the metal ion to stabilize the developing negative charge. These same catalytic strategies of metal ion coordination and hydrogen bond donation operate in the Tetrahymena ribozyme reaction, suggesting that these features of catalysis have been conserved during evolution and thus extend to all group I introns. The two ribozymes also exhibit quantitative differences in their response to 3'-sulfur substitution. The Azoarcus ribozyme binds and cleaves the phosphorothiolate substrate more efficiently relative to the natural substrate than the Tetrahymena ribozyme under the same conditions, suggesting that the Azoarcus ribozyme better accommodates the phosphorothiolate at the active site both in the ground state and in the transition state. These differences may reflect either a less tightly knit Azoarcus structure and/or spatial deviations between backbone atoms in the two ribozymes that arise during divergent evolution, analogous to the well-documented relationship between protein sequence and structure.  相似文献   

9.
Divalent metal ions play a crucial role in catalysis by many RNA and protein enzymes that carry out phosphoryl transfer reactions, and defining their interactions with substrates is critical for understanding the mechanism of biological phosphoryl transfer. Although a vast amount of structural work has identified metal ions bound at the active site of many phosphoryl transfer enzymes, the number of functional metal ions and the full complement of their catalytic interactions remain to be defined for any RNA or protein enzyme. Previously, thiophilic metal ion rescue and quantitative functional analyses identified the interactions of three active site metal ions with the 3'- and 2'-substrate atoms of the Tetrahymena group I ribozyme. We have now extended these approaches to probe the metal ion interactions with the nonbridging pro-S(P) oxygen of the reactive phosphoryl group. The results of this study combined with previous mechanistic work provide evidence for a novel assembly of catalytic interactions involving three active site metal ions. One metal ion coordinates the 3'-departing oxygen of the oligonucleotide substrate and the pro-S(P) oxygen of the reactive phosphoryl group; another metal ion coordinates the attacking 3'-oxygen of the guanosine nucleophile; a third metal ion bridges the 2'-hydroxyl of guanosine and the pro-S(P) oxygen of the reactive phosphoryl group. These results for the first time define a complete set of catalytic metal ion/substrate interactions for an RNA or protein enzyme catalyzing phosphoryl transfer.  相似文献   

10.
The VS ribozyme trans-cleavage substrate interacts with the catalytic RNA via tertiary interactions. To study the role of phosphate groups in the ribozyme–substrate interaction, 18 modified substrates were synthesized, where an epimeric phosphorothioate replaces one of the phosphate diester linkages. Sites in the stem–loop substrate where phosphorothioate substitution impaired reaction cluster in two regions. The first site is the scissile phosphate diester linkage and nucleotides downstream of this and the second site is within the loop region. The addition of manganese ions caused recovery of the rate of reaction for phosphorothioate substitutions between A621 and A622 and U631 and C632, suggesting that these two phosphate groups may serve as ligands for two metal ions. In contrast, significant manganese rescue was not observed for the scissile phosphate diester linkage implying that electrophilic catalysis by metal ions is unlikely to contribute to VS ribozyme catalysis. In addition, an increase in the reaction rate of the unmodified VS ribozyme was observed when a mixture of magnesium and manganese ions acted as the cofactor. One possible explanation for this effect is that the cleavage reaction of the VS ribozyme is rate limited by a metal dependent docking of the substrate on the ribozyme.  相似文献   

11.
The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC) that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis.  相似文献   

12.
Single-atom substrate modifications have revealed an intricate network of transition state interactions in the Tetrahymena ribozyme reaction. So far, these studies have targeted virtually every oxygen atom near the reaction center, except one, the 5'-bridging oxygen atom of the scissile phosphate. To address whether interactions with this atom play any role in catalysis, we used a new type of DNA substrate in which the 5'-oxygen is replaced with a methylene (-CH2-) unit. Under (kcat/Km)S conditions, the methylene phosphonate monoester substrate dCCCUCUT(mp)TA4 (where mp indicates the position of the phosphonate linkage) unexpectedly reacts approximately 10(3)-fold faster than the analogous control substrates lacking the -CH2- modification. Experiments with DNA-RNA chimeric substrates reveal that the -CH2- modification enhances docking of the substrates into the catalytic core of the ribozyme by approximately 10-fold and stimulates the chemical cleavage by approximately 10(2)-fold. The docking effect apparently arises from the ability of the -CH2- unit to suppress inherently deleterious effects caused by the thymidine residue that immediately follows the cleavage site. To analyze the -O- to -CH2- modification in the absence of this thymidine residue, we prepared oligonucleotide substrates containing methyl phosphate or ethyl phosphonate at the reaction center, thereby eliminating the 3'-terminal TA4 nucleotidyl group. In this context, the -O- to -CH2-modification has no effect on docking but retains the approximately 10(2)-fold effect on the chemical step. To investigate further the stimulatory influence on the chemical step, we measured the "intrinsic" effect of the -O- to -CH2- modification in nonenzymatic reactions with nucleophiles. We found that in solution, the -CH2- modification stimulates chemical reactivity of the phosphorus center by <5-fold, substantially lower in magnitude than the stimulatory effect in the catalytic core of the ribozyme. The greater stimulatory effect of the -CH2- modification in the active site compared to in solution may arise from fortuitous changes in molecular geometry that allow the ribozyme to accommodate the phosphonate transition state better than the natural phosphodiester transition state. As the -CH2- unit lacks lone pair electrons, its effectiveness in the ribozyme reaction suggests that the 5'-oxygen of the scissile phosphate plays no role in catalysis via hydrogen bonding or metal ion coordination. Finally, we show by analysis of physical organic data that such interactions in general provide little catalytic advantage to RNA and protein phosphoryl transferases because the 5'-oxygen undergoes only a small buildup of negative charge during the reaction. In addition to its mechanistic significance for the Tetrahymena ribozyme reaction and phosphoryl transfer reactions in general, this work suggests that phosphonate monoesters may provide a novel molecular tool for determining whether the chemical step limits the rate of an enzymatic reaction. As methylene phosphonate monoesters react modestly faster than phosphate diesters in model reactions, a similarly modest stimulatory effect on an enzymatic reaction upon -CH2- substitution would suggest rate-limiting chemistry.  相似文献   

13.
Interactions with divalent metal ions are essential for the folding and function of the catalytic RNA component of the tRNA processing enzyme ribonuclease P (RNase P RNA). However, the number and location of specific metal ion interactions in this large, highly structured RNA are poorly understood. Using atomic mutagenesis and quantitative analysis of thiophilic metal ion rescue we provide evidence for metal ion interactions at the pro-R(P) and pro-S(P) non-bridging phosphate oxygens at nucleotide A67 in the universally conserved helix P4. Moreover, second-site modifications within helix P4 and the adjacent single stranded region (J3/4) provide the first evidence for metal ion interactions with nucleotide base functional groups in RNase P RNA and reveal the presence of an additional metal ion important for catalytic function. Together, these data are consistent with a cluster of metal ion interactions in the P1-P4 multi-helix junction that defines the catalytic core of the RNase P ribozyme.  相似文献   

14.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.  相似文献   

15.
Endonuclease from Serratia marcescens hydrolyzes internucleotide phosphorothioate linkages of R(P) configuration with inversion of configuration at P-atom. This observation supports a reported architecture of the active site, with 3'-bridging and pro-S(P) non-bridging oxygen atoms of the scissile phosphate group involved in direct contact with hydrated magnesium cation, while His-89 activates a water molecule which attacks the phosphorus atom according to a one-step in-line mechanism. The presence of a phosphorothioate bond of S(P) configuration downstream to that one being cleaved reduces the rate of hydrolysis. This suggests participation of the pro-S(P) oxygen atom of that phosphate bond in the mechanism of action of the enzyme, which was not detected in published crystallographic analyses.  相似文献   

16.
The transfer RNA 5' maturation enzyme RNase P has been characterized in Bacteria, Archaea, and Eukarya. The purified enzyme from all three kingdoms is a ribonucleoprotein containing an essential RNA subunit; indeed, the RNA subunit of bacterial RNase P RNA is the sole catalytic component. In contrast, the RNase P activity isolated from spinach chloroplasts lacks an RNA component and appears to function as a catalytic protein. Nonetheless, the chloroplast enzyme recognizes a pre-tRNA substrate for E. coli RNase P and cleaves it as efficiently and precisely as does the bacterial enzyme. To ascertain whether there are differences in catalytic mechanism between an all-RNA and an all-protein RNase P, we took advantage of the fact that phosphodiester bond selection and hydrolysis by the E. coli RNase P ribozyme is directed by a Mg2+ ion coordinated to the nonbridging pro-Rp oxygen of the scissile bond, and is blocked by sulfur replacement of this oxygen. We therefore tested the ability of the chloroplast enzyme to process a precursor tRNA containing this sulfur substitution. Partially purified RNase P from spinach chloroplasts can accurately and efficiently process phosphorothioate-substituted pre-tRNAs; cleavage occurs exclusively at the thio-containing scissile bond. The enzymatic throughput is fivefold slower, consistent with a general chemical effect of the phosphorothioate substitution rather than with a metal coordination deficiency. The chloroplast RNase P reaction mechanism therefore does not involve a catalytic Mg2+ bonded to the pro-Rp phosphate oxygen, and hence is distinct from the mechanism of the bacterial ribozyme RNase P.  相似文献   

17.
Domain 5 (D5) is the central core of group II intron ribozymes. Many base and backbone substituents of this highly conserved hairpin participate in catalysis and are crucial for binding to other intron domains. We report the solution structures of the 34-nucleotide D5 hairpin from the group II intron ai5 gamma in the absence and presence of divalent metal ions. The bulge region of D5 adopts a novel fold, where G26 adopts a syn conformation and flips down into the major groove of helix 1, close to the major groove face of the catalytic AGC triad. The backbone near G26 is kinked, exposing the base plane of the adjacent A-U pair to the solvent and causing bases of the bulge to stack intercalatively. Metal ion titrations reveal strong Mg(2+) binding to a minor groove shelf in the D5 bulge. Another distinct metal ion-binding site is observed along the minor groove side of the catalytic triad, in a manner consistent with metal ion binding in the ribozyme active site.  相似文献   

18.
The RNA phosphodiester bond cleavage activity of a series of 16 thio-deoxyribozymes 10-23, containing a P-stereorandom single phosphorothioate linkage in predetermined positions of the catalytic core from P1 to P16, was evaluated under single-turnover conditions in the presence of either 3 mM Mg(2+) or 3 mM Mn(2+). A metal-specificity switch approach permitted the identification of nonbridging phosphate oxygens (proR(P) or proS(P)) located at seven positions of the core (P2, P4 and P9-13) involved in direct coordination with a divalent metal ion(s). By contrast, phosphorothioates at positions P3, P6, P7 and P14-16 displayed no functional relevance in the deoxyribozyme-mediated catalysis. Interestingly, phosphorothioate modifications at positions P1 or P8 enhanced the catalytic efficiency of the enzyme. Among the tested deoxyribozymes, thio-substitution at position P5 had the largest deleterious effect on the catalytic rate in the presence of Mg(2+), and this was reversed in the presence of Mn(2+). Further experiments with thio-deoxyribozymes of stereodefined P-chirality suggested direct involvement of both oxygens of the P5 phosphate and the proR(P) oxygen at P9 in the metal ion coordination. In addition, it was found that the oxygen atom at C6 of G(6) contributes to metal ion binding and that this interaction is essential for 10-23 deoxyribozyme catalytic activity.  相似文献   

19.
20.
Tinsley RA  Harris DA  Walter NG 《Biochemistry》2004,43(28):8935-8945
The ability of divalent metal ions to participate in both structure formation and catalytic chemistry of RNA enzymes (ribozymes) has made it difficult to separate their cause and effect in ribozyme function. For example, the recently solved crystal structures of precursor and product forms of the cis-cleaving genomic hepatitis delta virus (HDV) ribozyme show a divalent metal ion bound in the active site that is released upon catalysis due to an RNA conformational change. This conformational switch is associated with a repositioning of the catalytically involved base C75 in the active-site cleft, thus controlling catalysis. These findings confirm previous data from fluorescence resonance energy transfer (FRET) on a trans-acting form of the HDV ribozyme that found a global conformational change to accompany catalysis. Here, we further test the conformational switch model by measuring the Mg(2+) dependence of the global conformational change of the trans-acting HDV ribozyme, using circular dichroism and time-resolved FRET as complementary probes of secondary and tertiary structure formation, respectively. We observe significant differences in both structure and Mg(2+) affinity of the precursor and product forms, in the presence and absence of 300 mM Na(+) background. The precursor shortens while the product extends with increasing Mg(2+) concentration, essentially amplifying the structural differences observed in the crystal structures. In addition, the precursor has an approximately 2-fold and approximately 13-fold lower Mg(2+) affinity than the product in secondary and tertiary structure formation, respectively. We also have compared the C75 wild-type with the catalytically inactive C75U mutant and find significant differences in global structure and Mg(2+) affinity for both their precursor and product forms. Significantly, the Mg(2+) affinity of the C75 wild-type is 1.7-2.1-fold lower than that of the C75U mutant, in accord with the notion that C75 is essential for a catalytic conformational change that leads to a decrease in the local divalent metal ion affinity and release of a catalytic metal. Thus, a consistent picture emerges in which divalent metal ions and RNA functional groups are intimately intertwined in affecting structural dynamics and catalysis in the HDV ribozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号