首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The Suzuki coupling reaction has been used to introduce a methyl group derived from commercially available methylboronic acid into a vinyl triflate. This has led to a concise synthesis of all-trans-geranylgeraniol, with the key step being the palladium-catalyzed, silver-mediated methylation of triflate to give ethyl geranylgeranoate. This coupling protocol has also been used to produce the novel geranylgeranyl diphosphate (GGPP) analogue 3-phenyl-3-desmethylgeranylgeranyl diphosphate (3-PhGGPP, ). Our previously developed organocuprate coupling protocol has been used to introduce the cyclopropyl and tert-butyl moieties into the 3-position of vinyl triflate. The four GGPP analogues 3-vinyl-3-desmethylgeranylgeranyl diphosphate (3-vGGPP, ), 3-cyclopropyl-3-desmethylgeranylgeranyl diphosphate (3-cpGGPP, ), 3-tert-butyl-3-desmethyl-geranylgeranyl diphosphate (3-tbGGPP, ), and were then evaluated as potential inhibitors of recombinant yeast protein-geranylgeranyl transferase I (PGGTase I). The potential mechanism-based inhibitors 3-vGGPP and 3-cpGGPP did not exhibit time-dependent inactivation of PGGTase I. Instead, both analogues were alternative substrates, in accord with the interaction of the corresponding farnesyl analogues 3-vFPP and 3-cpFPP with PFTase. The tert-butyl and phenyl analogues were not substrates, but were instead competitive inhibitors of PGGTase I. Note that all four of the GGPP analogues were bound less tightly by the enzyme than the natural substrate, in contrast to the behavior of the 3-substituted FPP analogues.  相似文献   

2.
Protein farnesyl transferase (PFTase) catalyzes the reaction between farnesyl diphosphate and a protein substrate to form a thioether-linked prenylated protein. The fact that many prenylated proteins are involved in signaling processes has generated considerable interest in protein prenyl transferases as possible anticancer targets. While considerable progress has been made in understanding how prenyl transferases distinguish between related target proteins, the rules for isoprenoid discrimination by these enzymes are less well understood. To clarify how PFTase discriminates between FPP and larger prenyl diphosphates, we have examined the interactions between the enzyme and several isoprenoid analogues, GGPP, and the farnesylated peptide product using a combination of biochemical and structural methods. Two photoactive isoprenoid analogues were shown to inhibit yeast PFTase with K(I) values as low as 45 nM. Crystallographic analysis of one of these analogues bound to PFTase reveals that the diphosphate moiety and the two isoprene units bind in the same positions occupied by the corresponding atoms in FPP when bound to PFTase. However, the benzophenone group protrudes into the acceptor protein binding site and prevents the binding of the second (protein) substrate. Crystallographic analysis of geranylgeranyl diphosphate bound to PFTase shows that the terminal two isoprene units and diphosphate group of the molecule map to the corresponding atoms in FPP; however, the first and second isoprene units bulge away from the acceptor protein binding site. Comparison of the GGPP binding mode with the binding of the farnesylated peptide product suggests that the bulkier isoprenoid cannot rearrange to convert to product without unfavorable steric interactions with the acceptor protein. Taken together, these data do not support the "molecular ruler hypotheses". Instead, we propose a "second site exclusion model" in which PFTase binds larger isoprenoids in a fashion that prevents the subsequent productive binding of the acceptor protein or its conversion to product.  相似文献   

3.
Harris CM  Derdowski AM  Poulter CD 《Biochemistry》2002,41(33):10554-10562
Protein farnesyltransferase (PFTase) is a zinc-containing metalloenzyme that catalyzes the alkylation of cysteine (C) in protein substrates containing a C-terminal "CaaX" motif by farnesyl diphosphate (FPP). In yeast PFTase Zn(II) is coordinated to D307, C309, and H363 in the beta-subunit. The inner coordination sphere of the metal also contains a water molecule to give a net charge of 0 for the tetracoordinate Zn(II) center. When the protein substrate binds, the water molecule is replaced by the thiol of the cysteine residue, and the thiol is deprotonated to generate a Zn(II)-stabilized thiolate in the PFTase.FPP.protein ternary complex for the ensuing prenyl transfer reaction. An expression system was constructed for yeast PFTase containing a His(6) tag at the C-terminus of the beta-subunit to facilitate purification of the wild-type enzyme and site-directed mutants. The amino acids that coordinate Zn(II) were substituted to give a series of mutant PFTases with net charges of +1, 0, -1, and -2 at the Zn(II) center of the ternary enzyme.substrate complexes. Wild-type PFTase and the site-directed mutants were purified as alpha,beta-heterodimers, and each was found to contain an equivalent of Zn(II). All of the mutants were less reactive than wt PFTase (net charge of -1), with the greatest losses of activity seen for the mutants with net charges of 0 and +1. Equilibrium binding experiments with dGCVIA peptide and an unreactive analogue of FPP, (E,E)-2-[2-oxo-2-[[(3,7,11-trimethyl-2,6,10-dodecatrienyl)oxy]amino]ethyl]phosphonate (FNP), established that all of the mutants bound an equivalent of the peptide substrate. Like wt PFTase, the pH dependence of K(D) for the mutants did not change significantly between pH 5 and pH 9, indicating that pK(A)s for the thiol moiety in the (mutant PFTase).FNP.peptide complexes were <5. dGSVIA and dG(beta-NH2-Ala)VIA, where the sulfhydryl moiety was replaced by hydroxyl and amino groups, respectively, were not substrates. These experiments suggest a direct relationship between the net charge of the Zn(II) center in PFTase and the reactivity of the peptide thiolate that is alkylated by FPP.  相似文献   

4.
Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone, and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays either use radiolabeled substrates and are discontinuous or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format, and that it can reproduce IC(50) values for several previously reported FDPS inhibitors. This new method offers a simple, safe, and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target.  相似文献   

5.
[背景] Skyllamycins是一类从链霉菌中发现的具有血小板生长因子抑制和生物膜抑制作用的非核糖体肽类,其环肽环合反应是由非核糖体肽合成酶中的硫酯酶功能域催化完成。[目的] 克隆和表达Skyllamycin非核糖体肽合成酶最后一个模块中的硫酯酶(Skyxy-TE)基因,合成Skyxy-TE底物类似物,通过体外催化实验表征Skyxy-TE的底物杂泛性。[方法] 采用Ligation Independent Cloning(LIC)方法,从一株含有Skyllamycin B生物合成基因簇的链霉菌Streptomyces sp.PKU-MA01239中克隆和表达skyxy-TE,通过镍离子柱亲和层析纯化Skyxy-TE。运用固相多肽合成法合成2个底物类似物12,进行Skyxy-TE的体外催化实验。[结果] 通过对Skyxy-TE的表达纯化,获得了纯度较好的可溶性蛋白;通过固相多肽合成,得到了能够模拟Skyllamycin B底物类似物的化合物12,硫酯酶蛋白体外催化化合物12得到了化合物34,化合物34通过核磁共振和高分辨质谱确认为环肽。[结论] Skyllamycin B生物合成中Skyxy-TE表现出一定的底物杂泛性,可以识别底物类似物催化环化反应,该研究为将来利用化学-酶联法制备更多环肽类似物提供了依据。  相似文献   

6.
A series of analogues of isopentenyl diphosphate (IPP) having a dicarboxylate moiety in place of the diphosphate were synthesized and investigated as inhibitors of undecaprenyl diphosphate (UPP) synthase and protein farnesyltransferase (PFTase). PFTase is involved in control of cell proliferation and is known to be inhibited by certain maleic acid derivatives bearing long alkyl substituents (> or =12 carbons, e.g., chaetomellic acid). UPP synthase is a potential target for antimicrobial agents and utilizes isopentenyl diphosphate (IPP) as a substrate. A number of dicarboxylate-containing IPP analogues were prepared in 2-5 steps from commercially available starting materials with good overall yield (20-78%). These syntheses involved the conjugate addition of an organocuprate to dimethyl acetylenedicarboxylate (DMAD) followed by basic ester hydrolysis. The E-pentenylbutanedioic acid 32 showed inhibition of UPP synthase with an IC(50) of 135 microM. Compound 30 displays competitive inhibition of PFTase with a K(i) of 287 microM.  相似文献   

7.
Flavoenzymes have been extensively studied for their structural and mechanistic properties because they find potential application as industrial biocatalysts. They are attractive for biocatalysis because of the selectivity, controllability and efficiency of their reactions. Some of these enzymes catalyse the oxidative modification of protein substrates. Among them oxygenases (monoxoygenases and dioxygenases) are of special interest because they are highly entantio as well as regio-selective and can be used for oxyfunctionalisation. Dioxygenase enzymes catalyse oxygenation reactions in which both di-oxygen atoms are incorporated into the product. A dioxygenase enzyme purified from Aspergillus fumigatus MC8 was subjected to protein digestion followed by peptide sequencing. The sequence analysis of the peptide fragments resulted in identifying its match with that of an extracellular dioxygenase sequence from the same species of fungus existing in the protein database. The sequence was submitted to protein homology/analogy recognition engine online server for homology modelling and the 3D structure was predicted. Subsequently, the in silico studies of the enzyme–substrate (protein–ligand) interaction were carried out by using the method of molecular docking simulations wherein the modelled dioxygenase enzyme (protein) was docked with the substrates (ligands), catechin and epicatechin.  相似文献   

8.
Bacterial proteases play an important role in a broad spectrum of processes, including colonization, proliferation, and virulence. In this respect, bacterial proteases are potential biomarkers for bacterial diagnosis and targets for novel therapeutic protease inhibitors. To investigate these potential functions, the authors designed and used a protease substrate fluorescence resonance energy transfer (FRET) library comprising 115 short d- and l-amino-acid-containing fluorogenic substrates as a tool to generate proteolytic profiles for a wide range of bacteria. Bacterial specificity of the d-amino acid substrates was confirmed using enzymes isolated from both eukaryotic and prokaryotic organisms. Interestingly, bacterial proteases that are known to be involved in housekeeping and nutrition, but not in virulence, were able to degrade substrates in which a d-amino acid was present. Using our FRET peptide library and culture supernatants from a total of 60 different bacterial species revealed novel, bacteria-specific, proteolytic profiles, although in-species variation was observed for Pseudomonas aeruginosa, Porphyromonas gingivalis, and Staphylococcus aureus. Overall, the specific characteristic of our substrate peptide library makes it a rapid tool to high-throughput screen for novel substrates to detect bacterial proteolytic activity.  相似文献   

9.
Abstract

The present investigation describes the comparative properties, particularly the substrate specificity of three kallikrein-like serine proteinases (I, II and III) purified from rat submandibular gland extract (Bedi, G.S., Prep. Biochem. 22, 67–81. 1992). The physico-chemical and immunological properties of three proteinases were compared by Western blot analysis, immunodiffusion, immuno-electrophoresis, amino terminal sequence analysis, molecular weight determination and isoelectric focusing. Detailed substrate specificity of these proteinases was determined using chromogenic substrates, synthetic peptides and native proteins. The chromogenic substrate tosyl-gly-pro-arg-pNA was hydrolyzed preferentially by Proteinase I. The replacement of pro at the P2 position with bulky hydrophobic residues phe and leu completely abolished the hydrolysis by Proteinase I. The hydrolysis of the chromogenic substrates by Proteinase II was also affected by the amino acid residue present at the P2 position in the order of pro>gly>val>leu>phe. Neither Proteinase I nor Proteinase II hydrolyzed substrates in which arg was replaced with lys at the P1 position. Proteinase III was reactive against all the chromogenic substrates with arg or lys at the P1 position. Synthetic polypeptides T-kinin-leu and insulin B chain were resistant to cleavage by both Proteinase I and II and were cleaved specifically at arg-X peptide bond by Proteinase III. Tonin-like activity of Proteinase II was confirmed by cleavage of the angiotensin 1–14 at phe-his linkage to generate two fragments DRVYIHPF and HLLVYS respectively. All three proteinases cleaved human high molecular weight kininogen but only Proteinase III could cleave T-kininogen. Proteinase III was also reactive towards human and bovine fibronectin, fibrinogen and gelatin. Several other salivary and serum proteins were resistant to cleavage by these proteinases. Although the three enzymes are immunologically related, they differ with respect to size, isoelectric point, amino terminal sequence and inhibition profile.  相似文献   

10.
11.
Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.  相似文献   

12.
Summary This paper investigates the effect of the incorporation of a diazaethylene glycol derivative (Deg,2) into a cyclic peptide containing the tripeptide sequence Arg-Gly-Asp (RGD). This motif is a common structural element of many integrin ligands. The synthesis of cyclo-(Arg-Gly-Asp-Deg) (7) has been accomplished in solution using standard peptide chemistry. The intent was to improve the bioavailability of this new RGD cyclic peptide, which is shown to interact with αIIbβ3 or α5β1 receptors. A preliminary step for the conformational study of peptide7 was done in DMSO-d 6 using nuclear magnetic resonance spectroscopy techniques.  相似文献   

13.
Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 °C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 °C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C20) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).  相似文献   

14.
The Nudix hydrolase superfamily is identified by a conserved cassette of 23 amino acids, and it is characterized by its pyrophosphorylytic activity on a wide variety of nucleoside diphosphate derivatives. Of the 13 members of the family in Escherichia coli, only one, Orf180, has not been identified with a substrate, although a host of nucleoside diphosphate compounds has been tested. Several reports have noted a strong similarity in the three‐dimensional structure of the unrelated enzyme, isopentenyl diphosphate isomerase (IDI) to the Nudix structure, and the report that a Nudix enzyme was involved in the synthesis of geraniol, a product of the two substrates of IDI, prompted an investigation of whether the IDI substrates, isopentenyl diphosphate (IPP), and dimethylallyl diphosphate (DAPP) could be substrates of Orf180. This article demonstrates that Orf180 does have a very low activity on IPP, DAPP, and geranyl pyrophosphate (GPP). However, several of the other Nudix enzymes with established nucleoside diphosphate substrates hydrolyze these compounds at substantial rates. In fact, some Nudix hydrolases have higher activities on IPP, DAPP, and GPP than on their signature nucleoside diphosphate derivatives.  相似文献   

15.
Protein farnesyltransferase (PFTase) catalyzes the attachment of a geranylazide (C10) or farnesylazide (C15) moiety from the corresponding prenyldiphosphates to a model peptide substrate, N-dansyl-Gly-Cys-Val-Ile-Ala-OH. The rates of incorporation for these two substrate analogs are comparable and approximately twofold lower than that using the natural substrate farnesyl diphosphate (FPP). Reaction of N-dansyl-Gly-Cys(S-farnesylazide)-Val-Ile-Ala-OH with 2-diphenylphosphanylbenzoic acid methyl ester then gives a stable alkoxy-imidate linked product. This result suggests future generations whereby azide groups introduced using this enzymatic approach are functionalized using a broad range of azide-reactive reagents. Thus, chemistry has been developed that could be used to achieve highly specific peptide and protein modification. The farnesylazide analog may be useful in certain biological studies, whereas the geranylazide group may be more useful for general protein modification and immobilization.  相似文献   

16.
This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp = pyroglutamyl; Xaa = Phe or Val; and Y = pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes.  相似文献   

17.
Abstract

The significance of the “conformational-catalytic” mechanism of metal ion activation is not known. It is still at the state of being established for some enzymes. Right now, only speculations can be offered. All the enzymes mentioned have subunits and all have strongly negatively charged phosphate-containing substrates.

As a preliminary hypothesis, it may be suggested that one of the 2 mol of metal ion involved functions to “lock” one of the substrates into a configuration so that when the second one attacks that or another substrate, electrons are withdrawn from crucial bonds and catalysis occurs. Either metal ion or both or neither may do this by interacting directly with a substrate.  相似文献   

18.
Enantiomeric cyclopropavir phosphates (+)-9 and (?)-9 were synthesized and investigated as substrates for GMP kinase. N2-Isobutyryl-di-O-acetylcyclopropavir (11) was converted to (+)-monoacetate 12 using hydrolysis catalyzed by porcine liver esterase. Phosphorylation via phosphite 13 gave after deacylation, phosphate (+)-9. Acid-catalyzed tetrahydropyranylation of (+)-monoacetate 12 gave, after deacylation, tetrahydropyranyl derivative 14. Phosphorylation via phosphite 15 furnished, after deprotection, enantiomeric phosphate (-)-9. Racemic diphosphate 16 was also synthesized. The phosphate (+)-9 is a relatively good substrate for GMP kinase with a KM value of 57 μM that is similar to that of the natural substrates GMP (61 μM) and dGMP (82 μM). In contrast, the enantiomer (?)-9 is not a good substrate (KM 1200 μM) indicating a significant enantioselectivity for the GMP kinase catalyzed reaction of monophosphate to diphosphate.  相似文献   

19.
Apyrase (ATP-diphosphohydrolase, EC 3.6.1.5) and inorganic pyrophosphatase (EC 3.6.1.1) were partially purified fromS. aureofaciens RIA 57 and characterized. Apyrase degrades, in addition to ATP, other nucleoside triphosphates and nucleoside diphosphates, diphosphate, thiamine diphosphate, phosphoenolpyruvate and oligophosphates of chain lengthn ≦ 90. The apyrase activity was detected in the membrane and supernatant fractions. Its properties (substrate specificity, effect of inhibitors, pH optimum and effect of Mg2+ ions) were similar in both fractions except for the effect of oligomycin that inhibited only the membrane fraction. Pyrophosphatase exhibited a strict substrate specificity, substrates other than diphosphate being degraded relatively slowly. Of other enzymes exhibiting the phosphatase activity acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1), trimetaphosphatase (EC 3.6.1.2) and exopolyphosphatase (EC 3.6.1.11) degrading oligophosphates of chain lengthn = 15, 40 and 60, were detected.  相似文献   

20.
Protein farnesyltransferase (PFTase) catalyzes the attachment of a geranyl azide moiety to a peptide substrate, N-dansyl-Gly-Cys-Val-Ile-Ala-OH. The resulting azide-containing peptide was derivatized with a triphenylphosphine-based reagent to generate an O-alkyl imidate-linked product, rather than the amide-linked material expected via a Staudinger reaction. Since the CAAX box recognition motif (where the internal A residues are aliphatic amino acids) modified by PFTase can be incorporated into the C-terminus of virtually any polypeptide, this two-step procedure provides a general method for incorporating a diverse range of chemical modifications specifically near the C-terminus of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号