共查询到20条相似文献,搜索用时 0 毫秒
1.
同样的基因在不同的分化细胞中表达不同,基因的选择性表达问题涉及分化和衰老的本质。转录基因对DNaseⅠ(DNA酶Ⅰ)消化敏感,本文研究了RNA对小鼠重组染色质白蛋白基因DNaseⅠ消化敏感性的影响。分离BALB/c小鼠脑细胞核,加入终浓度为2mol/L的NaCl破坏核小体结构,加入不同量、不同来源的RNA,装透析袋,逐渐降低离子强度进行染色质重组。重组染色质中加入DNaseⅠ消化DNA,PCR扩增白蛋白基因的外显子1到外显子2约1200bp区段,PAGE电泳后,用银染色观察不同来源RNA促进DNaseⅠ对白蛋白基因的消化作用。不同组织来源(肝、肺、肾、脑)RNA对小鼠重组染色质中白蛋白基因DNaseⅠ消化敏感性均有促进作用,其中肝和肺RNA促进消化作用较强;酵母tRNA无显著促进消化作用;消化促进作用与RNA剂量有关。RNA能增加DNaseⅠ对白蛋白基因的消化敏感性且有组织(细胞)来源特异性。又委托丹麦Chemical R D 实验室合成2条与白蛋白基因互补的各23核苷酸的RNA,用其进行重组试验。结果表明,重组混合物中含有低至0.2μg/mL的RNA,即可以发挥显著的DNase I消化促进作用。 相似文献
2.
3.
RNA干扰与染色质沉默——生物体内精密的网络调控机制 总被引:2,自引:0,他引:2
基因表达受不同层次的调控.RNA干扰通过产生双链小RNA诱导同源mRNA序列降解,从而在转录后抑制特定基因的表达.最新的研究成果显示:RNA干扰产生的双链小RNA可通过与染色质中的重复序列DNA及组蛋白甲基化酶相互作用,引起组蛋白H3 Lys9的甲基化,进一步与异染色质形成相关蛋白结合,导致染色质沉默.综述了RNA干扰,小RNA,组蛋白修饰,染色质沉默及基因表达调控之间存在着精密的网络调控机制. 相似文献
4.
染色质可及性(chromatin accessibility)作为一种衡量染色质结合因子与染色质DNA结合能力高低的染色质属性,是评价染色质结构稳态的重要指标之一,在多种细胞核进程中扮演重要角色,包括基因转录调控以及DNA损伤修复等。该属性的异常调控与多种疾病的发生发展密切相关,包括肿瘤以及神经退行性疾病等。对于该属性探究已经成为生命科学与疾病领域的热点。伴随越来越多的新技术应运而生,例如染色质构象捕获技术、高通量测序技术以及两种技术的结合等。随着技术的进步,多种参与调控染色质可及性的因素被发现和总结,包括核小体占位、组蛋白修饰以及非编码RNA等。多项大规模的染色质组学数据绘制了多种疾病的染色质可及性图谱,为揭示疾病的发生发展与染色质可及性之间的关系提供了数据支持。同时,随着单细胞染色质可及性测序技术的发展,实现了对细胞类型染色质层面的划分,弥补了单纯依赖基因表达划分细胞类型的不足。本文将从染色质的组成与可及性、影响染色质可及性的因素、染色质可及性的检测方法,以及染色质可及性与癌症的关系等方面简要阐述染色质可及性的研究进展。 相似文献
5.
6.
7.
人基因组伸展开来长约 1 .8米 ,而人细胞核的直径不到 6微米 ,DNA在细胞核中以核小体的形式被高度压缩。这种结构在保证遗传物质稳定性的同时也阻碍了其它生物大分子接近DNA双螺旋。许多重要生命过程的发生又都依赖功能大分子与DNA的相互作用。机体内必然存在使核小体稳定性发生变化的调节机制以适应不同情况的需要。通常把染色质和单个核小体内发生的任何可检测到的变化称为染色质重塑。对核心组蛋白尾部的修饰 ,尤其是乙酰化修饰 ,与染色质结构变化密切相关。另有一类复合物也可以改变核小体稳定性 ,它们都含有一个DNA依赖的… 相似文献
8.
《基因组学与应用生物学》2015,(11)
真核生物染色质在核内的空间组织形式能影响DNA的空间分布,因而对基因转录、DNA复制等生物学过程具有调节作用。目前对这种空间上高度有序的基因组结构的认识还是粗糙的、碎片式的和不完整的。近年,利用染色质构象捕获技术发展起来的衍生技术——Hi-C技术,是一种研究全基因组范围的染色质相互作用以及探明全基因组的三维结构的分析技术。利用Hi-C技术能够对染色质内部或所有染色质之间的相互作用进行精细分析,从而把基因表达调控引入到空间的、全局性的研究层面,为全面解析与DNA有关的生物学过程的机理开启新的契机。本文主要阐述染色质构象解析技术Hi-C的实验原理、数据处理以及染色质构象信息提取,包括染色质内相互作用情况分析、全基因组基因活性分类、拓扑关联结构域(TAD)和染色质环(chromatin loop),介绍染色质构象信息与基因调控研究方面的国际前沿进展。 相似文献
9.
真核细胞染色质的结构与功能,是细胞和分子生物学研究的中心课题之一,受到极为广泛的注意。最近五年内.在染色质结构方面的研究进展显著,取得了一些比较一致的结果。这些结果是:染色质的基本纤维是一条串珠状结构,它由无数个亚单位——核体(nucleosome)组成,核体是由一条 DNA 分子串联起来的。核体本身由大约200个碱基对 DNA 和五种组蛋白相结合组成,四种组蛋白(H2A,H2B,H3和 H4)缔合成八聚体或两个四聚体构成核 相似文献
10.
《遗传》2020,(1)
在真核细胞中,DNA序列以染色质为载体,高度凝缩并存储于细胞核内,其复制、修复和转录表达等过程受到染色质构象的精准调控。越来越多的研究表明,特定的染色质构象可选择性激活或沉默基因,从而控制细胞自我维持或定向分化,决定细胞的组织特异性和细胞命运。因此,对染色质构象的深入研究已成为准确解析基因功能的一个关键切入点,也是当前基因组学研究所面临的一个巨大挑战。本文对染色质构象的研究历史、结构特征、动态调控机制进行了综述,并重点论述了不同维度构象特征对基因转录调控的影响,对该领域的研究难点进行了讨论,展望了其未来的发展方向,期望通过有效梳理染色质构象与基因调控之间的脉络关系,为未来该领域的研究提供参考。 相似文献
11.
染色质是真核DNA的存在方式,可以通过影响DNA的可及性调节基因转录,其基本单元为核小体,系由约147 bp的DNA缠绕在组蛋白八联体上形成的结构,核小体之间以连接DNA相连.核小体组蛋白上能发生甲基化和乙酰化等化学修饰.核小体位置、DNA的甲基化和组蛋白的修饰等对染色质状态(常染色质或异染色质)及基因组之间的长程相互作用有重要影响.近年,基于高通量测序技术,核小体位置和染色质修饰在多种细胞中的基因组分布已被测定.结果显示,这些标记的分布模式具有位点特异、动态变化、相互偶联和高度复杂的特征.本文详细回顾并评述了核小体位置和染色质修饰的分布模式、对应生物学功能、修饰之间的关联、实验测定技术、染色质状态的计算分析等内容.该工作对于深入认识和理解染色质的表观遗传调节机制有重要意义. 相似文献
12.
13.
真核生物的基因组较原核生物复杂 ,其基因包含在染色质中 ,基因的表达调控十分精细 .真核生物的染色体由一系列结构与功能独立的单元组成 ,各个单元的基因表达情况各不相同 .各单元间的结构称为边界元件 ,它使一侧的基因免受另一侧调控元件的影响 .这就是限定染色质转录功能区的染色质隔离子 (chromatininsulator) .染色质隔离子是顺式作用的DNA序列 ,它参与更高层次上的基因表达调控 .1 染色质隔离子的发现及生物学功能 早在 1985年 ,人们就在果蝇的染色体 87A7的两侧发现了scs和scs′ .Kellum等作… 相似文献
14.
15.
染色质免疫共沉淀(ChIP)技术是一种检测蛋白质与DNA结合的实验技术。该方法可以先进行样品交联, 然后将蛋白质与DNA复合物进行随机DNA切断, 再借助免疫学方法特异性富集与目的蛋白相结合的DNA片段, 从而检测转录因子等目的蛋白质与DNA的结合情况, 鉴定基因启动子或其它DNA结合位点。该方法同时也可应用于研究基因组特定位点的组蛋白修饰情况。该文介绍了依赖交联固定的常规免疫共沉淀(X-ChIP), 以及适用于103细胞级别微量实验材料的基于微球菌核酸酶非交联免疫共沉淀(ULI-NChIP)具体操作过程和注意事项。 相似文献
16.
染色质结构与基因表达调控 总被引:1,自引:0,他引:1
ChromatinStructureandGeneExpresionHUJian-GuangYANGJin-Shui(InstituteofGenetics,FudanUniversity,Shanghai200433)真核细胞中DNA与蛋白质结合形... 相似文献
17.
18.
在细胞核内,染色质可及性模式会随着外部刺激和发育线索的改变而发生动态变化。染色质可及性重构对于基因表达调控至关重要,在建立和维持细胞特性等方面发挥着重要作用。因此开展染色质可及性的研究对染色质功能上的三维解析具有十分重要的意义。近几年,随着高通量测序技术的进步以及测序成本的降低,基于高通量测序技术的染色质可及性分析方法得到了迅速发展。目前观察和分析全基因组染色质开放与否的常见技术主要有脱氧核糖核酸酶I超敏位点测序(DNase-seq)、微球菌核酸酶测序(MNase-seq)、甲醛辅助分离调控元件测序(FAIRE-seq)以及转座酶可及性测序(ATAC-seq)。本文比较了这4种染色质可及性分析技术的优缺点,详细介绍了它们的原理及主要实验流程,并简要讨论了它们的发展及相关技术的应用,期望通过这些互补的方法为染色质分析领域的未来发展提供一些借鉴和思路。 相似文献
19.
染色质转座酶可及性测序研究进展 总被引:1,自引:0,他引:1
染色质转座酶可及性测序(assay for transposase-accessible chromatin with high-throughput sequencing,ATAC-seq)诞生于2013年,具有比脱氧核糖核酸酶I超敏感位点测序(deoxyribonuclease I hypersensitive site sequencing, DNase-seq)和微球菌核酸酶敏感位点测序(micrococcal nuclease sequencing, MNase-seq)更快速、灵敏、简便的优点,是目前分析全基因组范围染色质开放区域的热点技术。通过该技术能获得染色质开放区域的相关信息,从而映射出转录因子等调控蛋白的结合区域和核小体定位等信息,对于研究表观遗传分子机制具有重要意义。本文比较了5种获取染色质开放区域技术的优缺点,重点介绍了ATAC-seq的原理和主要流程,描述了利用ATAC-seq技术研究染色质开放区域的发展概况以及ATAC-seq的相关应用,期望对真核生物全基因组水平的染色质开放区域研究、顺式调控元件鉴定以及遗传调控网络的解析等提供借鉴。 相似文献
20.
《生物化学与生物物理进展》2015,(11)
真核细胞中的染色质重塑因子种类繁多,多数以蛋白多聚体的形式存在于细胞中.不同的染色质重塑因子在特定时间定位于特定的核小体上,通过改变染色质结构,影响基因转录活性,进而确保细胞内各种生物学过程的正确运行.另外,染色质重塑因子根据所含功能结构域的不同,大致分为SWI/SNF、ISWI、CHD和INO80四大家族,不同的染色质重塑因子之间既有蛋白质结构和酶活性的相似性,各自又有其特异性.本综述的宗旨在于全面概括和总结染色质重塑因子的分类、结构特点以及其在细胞内的生物学功能,为深入研究染色质重塑因子的生物学功能,尤其是在发育和疾病发生中的作用机制提供理论基础. 相似文献