首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vivo effects of administration of the synthetic, functional biomimetic cation [Cr(3)O(O(2)CCH(2)CH(3))(6)(H(2)O)(3)](+) to healthy and type I and type II diabetic model rats are described. In contrast to current chromium-containing nutrition supplements, which only serve as sources of absorbable chromium, the trinuclear cation has been shown in in vitro assays to interact with the insulin receptor, activating its kinase activity, presumably by trapping the receptor in its active conformation. Thus, treatment of rats with the trinuclear cation would be expected to result in changes in lipid and carbohydrate metabolism related to insulin action. After 24 weeks of intravenous administration (0-20 micro g Cr/kg body mass), the cation results in a concentration-dependent lowering of levels of fasting blood plasma LDL cholesterol, total cholesterol, triglycerides, and insulin and of 2-h plasma insulin and glucose levels after a glucose challenge; these results confirm a previous 12-week study examining the effect of the synthetic cation on healthy rats and are in stark contrast to those of administration of other forms of Cr(III) to rats, which have no effect on these parameters. The cation has little, if any, effect on rats with STZ-induced diabetes (a type I diabetes model). However, Zucker obese rats (a model of the early stages of type II diabetes) after 24 weeks of supplementation (20 micro g/kg) have lower fasting plasma total, HDL, and LDL cholesterol, triglycerides, and insulin levels and lower 2-h plasma insulin levels. The lowering of plasma insulin concentrations with little effect on glucose concentrations suggests that the supplement increases insulin sensitivity.  相似文献   

2.
Hypothesizing that UCP2 may influence insulin secretion by modifying the ATP/ADP ratio within pancreatic islets, we have investigated the expression of intraislet UCP2 gene in rats showing insulin oversecretion (non-diabetic Zucker fa/fa obese rats, glucose-infused Wistar rats) or insulin undersecretion (fasting and mildly diabetic rats). We found that in Zucker fa/fa obese rats, hyperinsulinemia (1222 ± 98 pmol/1 vs. 128 ± 22 pmol/1 in lean Zucker rats) was accompanied by a significant increase in UCP2 mRNA levels. In rat submitted to a 5 day infusion with glucose, hyperinsulinemia (1126 ± 101 pmol/l vs. 215 ± 25 pmol/1 in Wistar control rats), coincided with an enhanced intraislet UCP2 gene expression, whereas a 8h or a 2 day-infusion did not induce significant changes in UCP2 mRNA expression. In rats made hypoinsulinemic and mildly diabetic by the injection of a low dose of streptozotocin, and in 4-day-fasting rats (plasma insulin 28 ± 5 pmol/1) UCP2 gene expression was sharply decreased. A 3-day-fast was ineffective. The data show the existence of a time-dependent correlation between islet mRNA UCP2 and insulin that may be interpreted as an adaptative response to prolonged insulin excess.  相似文献   

3.
3 O(O2CCH2CH3)6 (H2O)3]+ 1 and a naturally occurring, biologically active form of chromium, low-molecular-weight chromium-binding substance (LMWCr), to rats are described. Given that the complexes are proposed to function by interacting with insulin receptor, trapping it in its active conformation, in contrast to current chromium-containing nutrition supplements, which only serve as sources of absorbable chromium, changes in lipid and carbohydrate metabolism would be expected. After 12 weeks administration (20 μg/kg body mass), compound 1 results in 40% lower levels of blood plasma LDL cholesterol, 33% lower levels of total cholesterol, and significantly lower HDL cholesterol and triglyceride; these results are in stark contrast to those of administration of other forms of Cr(III) to rats, which have no effect on these parameters. LMWCr, in contrast to 1, has no effect as it probably is degraded in vivoor excreted. These results are interpreted in terms of the mechanism of chromium action in response to insulin and the activation of insulin receptor, and the potential for the rational design of chromium-containing therapeutics is discussed. Received: 27 May 1999 / Accepted: 4 October 1999  相似文献   

4.
The essentiality of chromium(III) has been the subject of much debate, particularly in healthy subjects. Chromium(III)-containing supplements are widely used for body mass loss, building of lean muscle mass, and improving glucose and lipid metabolism. [Cr3O(O2CCH2CH3)6(H2O)3]+, Cr3, is one of the most-studied chromium nutritional supplements. The current study evaluates the effects of long-term (15 months) supplementation with Cr3 on body mass and glucose metabolism in Wistar rats on traditional and cafeteria-style (high fat, high carbohydrate) diets. Male Wistar rats were randomly assigned to one of four treatment groups: (1) control diet (milled Harlan Teklad LM-485 rodent diet), (2) control diet?+?1 mg Cr3/kg body mass/day, (3) a cafeteria-style (CAF) diet (high fat, high carbohydrate), or (4) CAF diet?+?1 mg Cr3/kg/day. Cr3 supplementation had no effect on fasting blood glucose levels or blood glucose levels in response to glucose and insulin challenges. Rats consuming the CAF?+?Cr3 diet tended to have a significantly higher body mass than rats consuming the CAF diet, but necropsy results showed no difference in visceral fat or body wall thickness between groups. These data suggest that long-term Cr3 supplementation does not significantly affect body mass in rats consuming a normal diet or glucose levels or metabolism in rats consuming either diet.  相似文献   

5.
Glycated insulin was evaluated in plasma and biological tissues of diabetic animal models by immunocytochemistry (ICC) and a novel radioimmunoassay. Glycated insulin circulated at 0.10 +/- 0.04 ng/ml and 2.20 +/- 0.14 ng/ml in lean and diabetic obese (ob/ob) mice, corresponding to 12.5 and 9.8% total plasma insulin, respectively. The concentration of glycated insulin was elevated 22-fold in obese mice compared to controls (P < 0.001). In the pancreas, glycated insulin was 48 +/- 10 and 83 +/- 4 ng/g wt (P < 0.05) in lean and obese mice, respectively, representing approximately 2% total insulin in the diabetic pancreas (4.60 +/- 0.17 microg/g wt). ICC revealed fluorescent positively stained cells in pancreatic islets from hydrocortisone (HC)-treated diabetic rats. Fasting of HC-treated rats, resulted in 3-fold and 15-fold reductions in plasma glycated insulin (P < 0.01) and insulin (P < 0.001), respectively. Following a 30 min feeding period in these insulin resistant rats, plasma glucose, insulin, and glycated insulin increased (P < 0.001) rapidly with 1.4-, 1.6-, and 2.9-fold elevations, respectively. Injection of HC-treated rats with insulin (50 U/kg) resulted in a rapid 33% decrease of plasma glucose (P < 0.001) and a marked 4-fold increase in plasma insulin (P < 0.01), whereas glycated insulin concentrations remained unchanged. Since glycation of insulin impairs biological activity, physiologically regulated secretion of glycated insulin into the circulation in diabetic animal models suggests a role in the pathogenesis of diabetes.  相似文献   

6.
Glucose uptake, glut 4 translocation and activation of protein kinase B were measured in Langendorff perfused hearts from (i) Wistar control, (ii) lean, neonatal Streptozotocin induced (Stz) and (iii) Zucker (fa/fa) obese diabetic rats of 10–12 weeks old. Hearts were subjected to stimulation with insulin, isoproterenol (-adrenergic agonist) or a combination of insulin and isoproterenol, during the perfusion protocol. Basal myocardial glucose uptake was impaired in both diabetic models, but could be stimulated significantly by insulin. In the Zucker rats, the time-course of insulin action was delayed. Insulin and -stimulation of glucose uptake were not additive. Evaluation of sarcolemmal membranes from these hearts showed that the affinity of glut 4 was significantly lower in the Zucker but not in the Stz hearts while a reduced affinity found with a combination of insulin and -stimulation in control hearts, was absent in both diabetic models. Total membrane lysates were analyzed for glut 4 expression while an intracellular component was generated to quantify translocation on stimulation as well as activity of protein kinase B (PKB). At this age, the neonatal Streptozotocin induced diabetic animals presented with more faulty regulation concerning adrenergic stimulated effects on elements of this signal transduction pathway while the Zucker fa/fa animals showed larger deviations in insulin stimulated effects. The overall response of the Zucker myocardium was poorer than that of the Stz group. No significant modulation of -adrenergic signaling on insulin stimulated glucose uptake was found. The PI-3-kinase inhibitor wortmannin, could abolish glucose uptake as well as PKB activation elicited by both insulin and isoproterenol.  相似文献   

7.
Super CitriMax (HCA-SX) is a novel calcium/potassium salt of (−)-hydroxycitric acid extracted from the dried fruit rind of the plant Garcinia cambogia, and commonly consumed as weight loss dietary supplement. In the present study, we investigated the effect of HCA-SX on inflammation, oxidative stress and insulin resistance in developing obese Zucker rats, an animal model of type II diabetes associated with inflammation and oxidative stress. Male Zucker rats (5-week old) were supplemented with vehicle (control) and HCA-SX in drinking water for 7 weeks. Oxidative stress markers, including malondialdehyde (MDA), protein carbonyl (DNPH), and protein tyrosine nitration (tyr-NO2) were measured in the liver and kidney tissues using biochemical and immunoblotting techniques. Compared to controls, the levels of MDA, DNPH and tyr-NO2 were lower in the liver and kidney of HCA-SX-treated animals. Furthermore, the levels of C-reactive protein and interleukin-6, markers of inflammation measured by ELISA, were lower in the plasma of HCA-SX-supplemented animals compared to controls, as were levels of fasting plasma insulin, glucose, and triglycerides. Interestingly, insulin resistance did not develop in HCA-SX-supplemented rats. Food-intake and body weight gain was also lower in rats supplemented with HCA-SX compared to their control counterparts. These results suggest that HCA-SX supplementation in obese Zucker rats reduces food-intake, body weight gain, and also attenuates the increases in inflammation, oxidative stress, and insulin resistance observed in untreated animals. Therefore, HCA-SX may be used as an intervention to overcome obesity-related complications, including inflammation, oxidative stress, and insulin resistance.  相似文献   

8.
To define metabolic influences on cardiac myosin expression and sarcoplasmic reticulum (SR) Ca2+-stimulated ATPase streptozotocin-diabetic rats were treated for 9–10 wk with etomoxir, an inhibitor of carnitine palmitoyl transferase I (CPT-1) and fatty acid synthesis, or an antilipolytic drug, acipimox. Etomoxir reduced myosin V3 of diabetic rats but did not normalize it. However, the high serum triglyceride, free-fatty acid and cholesterol concentrations in diabetic animals were greatly reduced. After bypassing the CPT-1 inhibition with a medium-chain fatty acid (miglyol) diet, the V3 contents and serum lipids were still reduced in the etomoxir-treated diabetic rats; V3 was also reduced in diabetic rats fed miglyol or treated with acipimox. Since low serum insulin or triiodothyronine concentrations in diabetic rats were not improved by these interventions but changes in V3 were correlated with those in triglyceride, free-fatty acid and cholesterol concentrations, it is likely that myosin may be influenced by some metabolic factors. To assess the role of adrenergic influences, diabetic rats (7–8 wk) were treated with an antisympathotonic drug, moxonidine, a -adrenoceptor blocking drug, propranolol, and a bradycardic drug, tedisamil. Myosin V3 was not reduced significantly in moxonidine-treated or propranolol-treated rats in comparison to untreated diabetic rats. Serum thyroid hormones and insulin were not altered, whereas triglycerides were reduced but not significantly by these antiadrenergic agents. Lowering serum lipids in diabetic rats by treatment with etomoxir, miglyol and acipimox increased the depressed SR Ca2+-stimulated ATPase activity. On the other hand, in diabetic rats treated with moxonidine, propranolol or tedisamil, the ATPase activity was not increased significantly. These results suggest that normalization of blood lipids is important for improving subcellular organelle function in diabetic hearts with impaired glucose utilization.  相似文献   

9.

Introduction

Insulin sensitizing drugs such as pioglitazone are not uniformly treatment effective among individual type 2 diabetic patients. Here, the relationship of pioglitazone efficacy to single nucleotide polymorphisms (SNP) of the adiponectin gene, a critical gene directly regulated by the drug, was examined in a cohort of Chinese Han type 2 diabetic patients.

Methods

Eighty type 2 diabetic patients were treated with pioglitazone (15 mg/day) for 12 weeks without interruption of their current therapeutic regimen. Fasting plasma glucose, fasting insulin, homeostasis model assessment for insulin resistance (HOMA-IR), and glycated hemoglobin (HbA1c%) were collected both prior to and following pioglitazone treatment. Response to pioglitazone was defined as a decrease of at least 15% in HbA1c% levels. Three regions of the adiponectin gene containing SNPs (promoter, intron 2 and exon 2, and exon 3) were amplified and sequenced to determine genotype.

Results

Serum adiponectin levels were significantly increased (p<0.001) whereas fasting plasma glucose, fasting insulin, HOMA-IR, and HbA1c% values were significantly decreased relative to baseline measurements (p<0.001). Response of patients with TG and TT genotypes at rs2241766 (exon2; 52.9% vs. 12.7%, respectively p = 0.001) was statistically significant relative to all other patients. Amongst rs2241766 TG and TT patients, the mean decrease in HbA1c% levels was greater where the genotype was TG (1.15±0.80 vs. 0.52±0.64, p = 0.001).

Conclusions

The adiponectin gene polymorphism rs2241766 T/G is associated with pioglitazone efficacy in type 2 diabetic patients, and status of the polymorphism may be an important clinical factor to consider prior to pioglitazone treatment.  相似文献   

10.
In this study, the in vivo effects of insulin and chronic treatment with bis(maltolato)oxovanadium (IV) (BMOV) on protein kinase B (PKB) activity were examined in the liver and skeletal muscle from two animal models of diabetes, the STZdiabetic Wistar rat and the fatty Zucker rat. Animals were treated with BMOV in the drinking water (0.75–1 mg/ml) for 3 (or 8) weeks and sacrificed with or without insulin injection. Insulin (5 U/kg, i.v.) increased PKB activity more than 10fold and PKB activity more than 3fold in both animal models. Despite the development of insulin resistance, insulininduced activation of PKB was not impaired in the STZdiabetic rats up to 9 weeks of diabetes, excluding a role for PKB in the development of insulin resistance in type 1 diabetes. Insulin-induced PKB activity was markedly reduced in the skeletal muscle of fatty Zucker rats as compared to lean littermates (fatty: 7fold vs. lean: 14fold). In contrast, a significant increase in insulinstimulated PKBa activity was observed in the liver of fatty Zucker rats (fatty: 15.7fold vs. lean: 7.6fold). Chronic treatment with BMOV normalized plasma glucose levels in STZdiabetic rats and decreased plasma insulin levels in fatty Zucker rats but did not have any effect on basal or insulininduced PKB and PKB activities. In conclusion (i) in STZdiabetic rats PKB activity was normal up to 9 weeks of diabetes; (ii) in fatty Zucker rats insulininduced activation of PKB (but not PKB) was markedly altered in both tissues; (iii) changes in PKB activity were tissue specific; (iv) the glucoregulatory effects of BMOV were independent of PKB activity.  相似文献   

11.

Aims/Hypothesis

We developed KDT501, a novel substituted 1,3-cyclopentadione chemically derived from hop extracts, and evaluated it in various in vitro and in vivo models of diabetes and insulin sensitivity.

Methods

KDT501 was evaluated for anti-inflammatory effects in monocyte/macrophage cells; agonistic activity for peroxisome proliferator-activated receptors (PPAR); lipogenesis and gene expression profile in human subcutaneous adipocytes. Body composition, glucose, insulin sensitivity, and lipids were assessed in diet-induced obesity (DIO) mice and Zucker Diabetic Fatty (ZDF) rats after oral administration.

Results

KDT501 mediated lipogenesis in 3T3L1 and human subcutaneous adipocytes; however, the gene expression profile of KDT501 differed from that of the full PPARγ agonist rosiglitazone, suggesting that KDT501 has pleiotropic biological activities. In addition, KDT501 showed only modest, partial PPARγ agonist activity and exhibited anti-inflammatory effects in monocytes/macrophages that were not observed with rosiglitazone. In a DIO mouse model, oral administration of KDT501 significantly reduced fed blood glucose, glucose/insulin AUC following an oral glucose bolus, and body fat. In ZDF rats, oral administration of KDT501 significantly reduced fed glucose, fasting plasma glucose, and glucose AUC after an oral glucose bolus. Significant, dose-dependent reductions of plasma hemoglobin A1c, weight gain, total cholesterol, and triglycerides were also observed in animals receiving KDT501.

Conclusion

These results indicate that KDT501 produces a unique anti-diabetic profile that is distinct in its spectrum of pharmacological effects and biological mechanism from both metformin and pioglitazone. KDT501 may thus constitute a novel therapeutic agent for the treatment of Type 2 diabetes and associated conditions.  相似文献   

12.
BACKGROUND: Chromium(III) is generally thought to be an essential trace element that allows for proper glucose metabolism. However, chromium(III) picolinate, Cr(pic)3, a popular dietary supplement form of chromium, has been shown to be capable of generating hydroxyl radicals and oxidative DNA damage in rats. The cation [Cr3O(O2CCH2CH3)6(H2O)3]+, Cr3, has been studied as an alternative supplemental source of chromium. It has been shown to increase insulin sensitivity and lower glycated hemoglobin levels in rats, making it attractive as a potential therapeutic treatment for gestational diabetes. To date, no studies have been published regarding the safety of Cr3 supplementation to a developing fetus. METHODS: From gestation days (GD) 6–17, mated CD‐1 female mice were fed diets delivering either 25 mg Cr/kg/day as Cr(pic)3, 3.3 or 26 mg Cr/kg/day as Cr3, or the diet only to determine if Cr3 could cause developmental toxicity. Dams were sacrificed on GD 17, and their litters were examined for adverse effects. RESULTS: No signs of maternal toxicity were observed. No decrease in fetal weight or significantly increased incidence of skeletal defects was observed in the Cr3 or Cr(pic)3 exposed fetuses compared to the controls. CONCLUSION: Maternal exposure to either Cr(pic)3 or Cr3 at the dosages employed did not appear to cause deleterious effects to the developing offspring in mice. Birth Defects Res (Part B), 80:1–5, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

13.
Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1Tyr632, p-AktSer473, β-arrestin-2, c-Src, p-AS160Thr642, and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.  相似文献   

14.

Objective

Study the effect of the 3:7 ratio of Astragalus total saponins and Curcumin on the model of diabetic nephropathy rats, and explore its mechanisms.

Methods

Diabetic nephropathy rats model was established by high-fat and high-sugar feed feeding combined with streptozotocin (STZ) injection in sublingual vein. Measured fasting blood glucose of rats on the 10, 20 and 30th day, and measured urine protein content in urine of rats on 30th days. Two hours after the last administration, measured glycated serum protein (GSP), insulin antibody (IA), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), malondialdehyde (MDA), insulin, superoxide dismutase (SOD), glutathione (GSH), urea nitrogen (BUN), creatinine (Cr) in the serum and calculated the renal index of rat. Take the viscera of pancreas and kidney, and HE staining, so as to observe pathological changes.

Result

Astragalus total saponins and Curcumin 3:7 compatibility each dose group can significantly reduce the diabetic nephropathy rats blood glucose of 30th days, significantly reduce the level of GSP, IA, TG, TC, LDL (P?<?0.01), and reduce MDA levels with different degrees (P?<?0.01 or P?<?0.05), and significantly increase the level of insulin (P?<?0.01), increase the level of HDL, SOD and GSH with different degrees (P?<?0.01 or P?<?0.05 or P?>?0.05); Astragalus total saponins and Curcumin 3:7 compatibility each dose group also can decrease renal index, UN, and Cr levels with different degrees and improve the pathological changes of pancreatic tissue and kidney tissue in diabetic nephropathy rats with different degrees (P?<?0.01 or P?<?0.05 or P?>?0.05).

Conclusion

The 3:7 ratio of Astragalus total saponins and Curcumin can achieve the treatment and protection effects on diabetic nephropathy rats by improve the glycometableolism, insulin resistance, lipid metableolism, oxidative stress levels, and pathological changes.  相似文献   

15.

Aims

The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured β-cells. However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the effects of a truncated GIP analog, D-Ala2-GIP1–30 (D-GIP1–30), on glucose homeostasis and β-cell mass in rat models of diabetes.

Materials and Methods

The insulinotropic and pro-survival potency of D-GIP1–30 was evaluated in perfused pancreas preparations and cultured INS-1 β-cells, respectively, and receptor selectivity evaluated using wild type and GIP receptor knockout mice. Effects of D-GIP1–30 on β-cell function and glucose homeostasis, in vivo, were determined using Lean Zucker rats, obese Vancouver diabetic fatty rats, streptozotocin treated rats, and obese Zucker diabetic fatty rats, with effects on β-cell mass determined in histological studies of pancreatic tissue. Lipogenic effects of D-GIP1–30 were evaluated on cultured 3T3-L1 adipocytes.

Results

Acutely, D-GIP1–30 improved glucose tolerance and insulin secretion. Chronic treatment with D-GIP1–30 reduced levels of islet pro-apoptotic proteins in Vancouver diabetic fatty rats and preserved β-cell mass in streptozotocin treated rats and Zucker diabetic fatty rats, resulting in improved insulin responses and glycemic control in each animal model, with no change in body weight. In in vitro studies, D-GIP1–30 exhibited equivalent potency to GIP1–42 on β-cell function and survival, but greatly reduced action on lipoprotein lipase activity in 3T3-L1 adipocytes.

Conclusions

These findings demonstrate that truncated forms of GIP exhibit potent anti-diabetic actions, without pro-obesity effects, and that the C-terminus contributes to the lipogenic actions of GIP.  相似文献   

16.
Increasing studies have shown protective effects of intermittent hypoxia on brain injury and heart ischemia. However, the effect of intermittent hypoxia on blood glucose metabolism, especially in diabetic conditions, is rarely observed. The aim of this study was to investigate whether intermittent hypoxia influences blood glucose metabolism in type 1 diabetic rats. Streptozotocin-induced diabetic adult rats and age-matched control rats were treated with intermittent hypoxia (at an altitude of 3 km, 4 h per day for 3 weeks) or normoxia as control. Fasting blood glucose, body weight, plasma fructosamine, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), pancreas β-cell mass, and hepatic and soleus glycogen were measured. Compared with diabetic rats before treatment, the level of fasting blood glucose in diabetic rats after normoxic treatment was increased (19.88?±?5.69 mmol/L vs. 14.79?±?5.84 mmol/L, p?<?0.05), while it was not different in diabetic rats after hypoxic treatment (13.14?±?5.77 mmol/L vs. 14.79?±?5.84 mmol/L, p?>?0.05). Meanwhile, fasting blood glucose in diabetic rats after hypoxic treatment was also lower than that in diabetic rats after normoxic treatment (13.14 ± 5.77 mmol/L vs. 19.88 ± 5.69 mmol/L, p<0.05). Plasma fructosamine in diabetic rats receiving intermittent hypoxia was significantly lower than that in diabetic rats receiving normoxia (1.28?±?0.11 vs. 1.39?±?0.11, p?<?0.05), while there were no significant changes in body weight, plasma insulin and β-cell mass. HOMA-IR in diabetic rats after hypoxic treatment was also lower compared with diabetic rats after normoxic treatment (3.48?±?0.48 vs. 3.86?±?0.42, p?<?0.05). Moreover, intermittent hypoxia showed effect on the increase of soleus glycogen but not hepatic glycogen. We conclude that intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats and its regulation on muscular glycogenesis may play a role in the underlying mechanism.  相似文献   

17.
The effect of dietary Platycodon grandiflorum on the improvement of insulin resistance and lipid profile was investigated in lean (Fa/-) and obese (fa/fa) Zucker rats, a model for noninsulin dependent diabetes mellitus. Dietary Platycodon grandiflorum feeding for 4 weeks resulted in a significant decrease in the concentration of plasma triglyceride in both lean and obese Zucker rats. Furthermore, dietary Platycodon grandiflorum markedly decreased both plasma cholesterol and fasting plasma insulin levels, and significantly decreased the postprandial glucose level at 30 min during oral glucose tolerance test in obese Zucker rats. Although there was no statistical significance, the crude glucose transporter 4 protein level of obese rats fed Platycodon grandiflorum tended to increase when compared with that of obese control rats. Therefore, the present results suggested that dietary Platycodon grandiflorum may be useful in prevention and improvement of metabolic disorders characterized by hyperinsulinemia states such as noninsulin dependent diabetes mellitus, syndrome X, and coronary artery disease.  相似文献   

18.
  • 1.1. Immature carp were subjected to 2-month fasting periods. Mobilization of reserves in liver and muscle, and the energy contribution of each reserve were studied. Changes in plasma glucose, amino acids, insulin and glucagon levels were determined throughout the experiment.
  • 2.2. No changes were observed in plasma glucose, insulin or glucagon at 19 days of fasting, but plasma amino acids increased. At 50 days of fasting, both plasma glucagon and amino acids increased, liver glycogen decreased and muscle proteolysis began.
  • 3.3. Between 50 and 67 days of fasting, plasma glucose and insulin decreased significantly, while glucagon and amino acids continued to increase. Strong muscular proteolysis was observed while liver glycogen stabilized.
  • 4.4. The contribution of each reserve in liver and muscle to energy production throughout fasting is considered.
  相似文献   

19.
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance.  相似文献   

20.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号