首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sanchez CP  McLean JE  Stein W  Lanzer M 《Biochemistry》2004,43(51):16365-16373
The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum remains controversial. By investigating the kinetics of chloroquine accumulation under varying-trans conditions, we recently presented evidence for a saturable and energy-dependent chloroquine efflux system present in chloroquine resistant P. falciparum strains. Here, we further characterize the putative chloroquine efflux system by investigating its substrate specificity using a broad range of different antimalarial drugs. Our data show that preloading cells with amodiaquine, primaquine, quinacrine, quinine, and quinidine stimulates labeled chloroquine accumulation under varying-trans conditions, while mefloquine, halofantrine, artemisinin, and pyrimethamine do not induce this effect. In the reverse of the varying-trans procedure, we show that preloaded cold chloroquine can stimulate quinine accumulation. On the basis of these findings, we propose that the putative chloroquine efflux system is capable of transporting, in addition to chloroquine, structurally related quinoline and methoxyacridine antimalarial drugs. Verapamil and the calcium/calmodulin antagonist W7 abrogate stimulated chloroquine accumulation and energy-dependent chloroquine extrusion. Our data are consistent with a substrate specific and inhibitible drug efflux system being present in chloroquine resistant P. falciparum strains.  相似文献   

2.
Chloroquine resistant Plasmodium berghei has several unusual features including (i) lack of malaria “pigment”, (ii) more efficient host catabolism of heme from infected erythrocytes, and (iii) relatively inefficient uptake of external chloroquine by infected red cells. The malaria pigment produced by chloroquine sensitive P. berghei is probably incompletely catabolized hemoglobin, the heme group of which is unavailable for subsequent catabolism by the host's reticuloendothelial system. This pigment has been suggested by others as the site of high affinity chloroquine binding. We hypothesized that all three characteristics of chloroquine resistant infections might be explained by enhanced proteolytic digestion of host cell hemoglobin. In confirmation, we report that chloroquine resistant P. berghei has 700–800% greater protease activity than the chloroquine sensitive form. This greatly elevated protease activity may explain the aforementioned characteristics of chloroquine resistant P. berghei and may help elucidate the basis of chloroquine resistance in human P. falciparum.  相似文献   

3.
With an account of the literature data that platinum drugs react with many cellular targets, including ATP and proteins, the authors suggested that disturbance of the function of energy-dependent ABC-transporters (markers of multidrug resistance, MDR) under the effect of platinum drugs could be a cause of increased efficacy of MDR agents (agents, MDR to which is developed by the classical mechanism) when used in combination with platinum drugs even in the treatment of multidrug resistant lung cancer. The cisplatin and carboplatin effect on accumulation of MDR doxorubicin in cells of non-small cell cancer was studied by flow cytometry with the use of biopsy specimens. The MDR phenotype of the tumors was determined by a change in doxorubicin intracellular accumulation under the action of the ABC-transporter(s)' inhibitors: verapamil and genistein (specific inhibitors of Pgp and MRP respectively) and sodium azide (an inhibitor of all energy-dependent ABC-transporters). The MDR phenotypes, i.e. Pgp-MRP+ or Pgp+MRP+, were detected in all the tumors investigated. Two types of changes in doxorubicin intracellular accumulation under the action of the inhibitors and the platinum drugs were shown: (a) an increase in doxorubicin cytoplasmic accumulation and (b) a change in subcellular distribution of the anthracycline (increased accumulation of doxorubicin in the cell nucleus and its higher binding to DNA). Cisplatin and carboplatin had an inhibitory effect on ABC-transporter(s) in all the tumors investigated but the effect of carboplatin was less pronounced. It was concluded that cisplatin and carboplatin stimulation of doxorubicin intracellular accumulation, as well as a change in subcellular distribution of the anthracycline under the action of the platinum drugs (increased doxorubicin accumulation in the cell nucleus) in multidrug resistant lung tumors could be at least partly explained by inhibition of the MDR transporter(s)' function. The results could provide a basis for the use of the sequential combination cisplatin (or carboplatin)-->doxorubicin in the treatment of multidrug resistant lung cancer.  相似文献   

4.
P-Glycoprotein and homologous multidrug transporters contain a phosphorylatable linker sequence that was proposed to control drug efflux on the basis that it was indeed phosphorylated in vitro and in vivo, and that inhibitors of protein kinase C (PKC) inhibited both P-glycoprotein phosphorylation and activity. However, site-directed mutagenesis of all phosphorylatable residues did not alter the drug resistance. The present work shows that PKC effectors are able to bind directly to multidrug transporters, from either cancer cells (mouse P-glycoprotein), yeast (Saccharomyces cerevisiae Pdr5p), or protozoan parasite (Leishmania tropica ltmdr1), and to inhibit their energy-dependent drug-efflux activity. The binding of staurosporine and derivatives such as CGP 41251 is prevented by preincubation with ATP, suggesting at least partial interaction at the ATP-binding site. In contrast, more hydrophobic compounds such as calphostin C and CGP 42700 bind outside the ATP-binding site and strongly interfere with drug interaction. A direct correlation is obtained between the efficiencies of PKC effectors to inhibit energy-dependent interaction of rhodamine 6G with yeast Pdr5p, to promote intracellular drug accumulation in various multidrug resistant cells, and to chemosensitize growth of resistant cells. The noncompetitive inhibition by PKC effectors of rhodamine 6G interaction with Pdr5p suggests that the binding might interfere with signal transduction between nucleotide hydrolysis and drug interaction. The overall results indicate that the multidrug transporters from different species display common features for interaction with PKC inhibitors. The hydrophobic derivative of staurosporine, CGP 42700, constitutes a potentially powerful modulator of P-glycoprotein-mediated multidrug resistance.  相似文献   

5.
Anthracycline accumulation was evaluated by flow cytometry or radiolabeled drug assays in cells and cytoplasts (enucleated cells) prepared from parental and multidrug-resistant human K562 leukemia cells. Treatment with energy inhibitors, such as dinitrophenol (DNP) or sodium azide/deoxyglucose, led to a marked decrease in daunorubicin accumulation in parental cells and cytoplasts. Another ionophore, monensin, also caused a significant decrease in daunorubicin accumulation; however, ATPase inhibitors ouabain, vanadate, and N-ethylamaleimide had little or no effect. The lysosomatropic agents chloroquine and methylamine caused a moderate decrease in anthracycline accumulation. Fluorescence microscopy showed that the DNP-sensitive daunorubicin uptake occurred in a nonnuclear subcellular compartment. Studies using increasing daunorubicin concentrations demonstrated fluorescence quenching that occurred in the nonnuclear, DNP-sensitive compartment. The effect of inhibitors on the accumulation of rhodamine 123 and acridine orange strongly implicated lysosomes as the principal compartment of this inhibitable daunorubicin accumulation. Cytoplasts from P-glycoprotein containing multidrug-resistant K562 cells demonstrated a verapamil-reversible, decreased daunorubicin accumulation that was observed in resistant whole cells. Verapamil pretreatment of cytoplasts from resistant cells revealed the subcellular DNP-sensitive uptake present in parental cytoplasts. These studies demonstrate that cytoplasts are an effective means to study drug transport in mammalian cells without nuclear drug binding. Parental K562 cells and cytoplasts exhibit an energy-dependent accumulation of daunorubicin into cytoplasmic organelles that is also present in resistant cells and cytoplasts when P-glycoprotein mediated efflux is inhibited.  相似文献   

6.
It is believed that P-glycoprotein (P-gp) is an energy-dependent drug efflux pump responsible for decreased drug accumulation in multidrug resistant (MDR) cells. In this study, we investigated whether azidopine, a photoactive dihydropyridine calcium channel blocker, is transported by P-gp in MDR Chinese hamster lung cells, DC-3F/VCRd-5L, and whether its binding site(s) on P-gp are distinct from those of Vinca alkaloids and cyclosporins. The efflux of azidopine from MDR cells was energy-dependent and inhibited by the cytotoxic agent vinblastine (VBL). Cyclosporin A (CsA), a modulator of MDR, also increased azidopine accumulation in MDR cells by decreasing the energy-dependent efflux of azidopine. P-gp in these cells was the only protein specifically bound to [3H]azidopine in photoaffinity experiments. The specific photoaffinity labeling of P-gp by [3H]azidopine was inhibited by CsA, SDZ 33-243, nonradioactive azidopine, and VBL with median concentrations (IC50) of 0.5, 0.62, 1.7, and 25 microM, respectively. The equilibrium binding of azidopine to plasma membranes of MDR variant DC-3F/VCRd-5L cells showed a single class of specific binding sites having a dissociation constant of 1.20 microM and a maximum binding capacity of 4.47 nmol/mg of protein. Kinetic analysis indicated that the inhibitory effect of VBL and CsA on azidopine binding to plasma membranes of MDR cells was noncompetitive, indicating that azidopine binds to P-gp at a binding site(s) different from the binding site(s) of these drugs.  相似文献   

7.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expresson and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict - but do not exclude - that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux. Furthermore, large amounts of P-gp in the plasma membrane altering the ultrastructure and generalized changes, such as increases or decreases in membrane fluidity, alterations in lipid composition, changes in transmembrane pH gradient and membrane potential have been described in MDR cell lines and could account for some of the findings.  相似文献   

8.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expression and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict--but do not exclude--that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
BACKGROUND: Human falciparum malaria, caused by the intracellular protozoa Plasmodium falciparum, results in 1-2 million deaths per year. P. falciparum digests host erythrocyte hemoglobin within its food vacuole, resulting in the release of potentially toxic free heme. A parasite-specific heme polymerization activity detoxifies the free heme by cross-linking the heme monomers to form hemozoin or malaria pigment. This biochemical process is the target of the widely successful antimalarial drug chloroquine, which is rapidly losing its effectiveness due to the spread of chloroquine resistance. We have shown that chloroquine resistance is not due to changes in the overall catalytic activity of heme polymerization or its chloroquine sensitivity. Therefore, the heme polymerization activity remains a potential target for novel antimalarials. In this study, we investigated the ability of heme analogs to inhibit heme polymerization and parasite growth in erythrocytes. MATERIALS AND METHODS: Incorporation of radioactive hemin substrate into an insoluble hemozoin pellet was used to determine heme polymerization. Incorporation of radioactive hypoxanthine into the nucleic acid of dividing parasites was used to determine the effects of heme analogs on parasite growth. Microscopic and biochemical measurements were made to determine the extent of heme analog entry into infected erythrocytes. RESULTS: The heme analogs tin protoporphyrin IX (SnPP), zinc protoporphyrin IX (ZnPP), and zinc deuteroporphyrin IX, 2,4 bisglycol (ZnBG) inhibited polymerization at micromolar concentrations (ZnPP << SnPP < ZnBG). However, they did not inhibit parasite growth since they failed to gain access to the site of polymerization, the parasite's food vacuole. Finally, we observed high ZnPP levels in erythrocytes from two patients with beta-thalassemia trait, which may inhibit heme polymerization. CONCLUSIONS: The heme analogs tested were able to inhibit hemozoin formation in Plasmodium falciparum trophozite extracts. The increased ZnPP levels found in thalassemic erythrocytes suggest that these may contribute, at least in part, to the observed antimalarial protection conferred by the beta-thalassemia trait. This finding may lead to the development of new forms of antimalarial therapy.  相似文献   

10.
Decreased cellular accumulation of cisplatin is a frequently observed mechanism of resistance to the drug. Beside passive diffusion, several cellular proteins using ATP hydrolysis as an energy source are assumed to be involved in cisplatin transport in and out of the cell. This investigation aimed at clarifying the contribution of intracellular ATP as an indicator of energy-dependent transport to cisplatin resistance using the A2780 human ovarian adenocarcinoma cell line and its cisplatin-resistant variant A2780cis. Depletion of intracellular ATP with oligomycin significantly decreased cellular platinum accumulation (measured by flameless atomic absorption spectrometry) in sensitive but not in resistant cells, and did not affect cisplatin efflux in both cell lines. Inhibition of Na+,K+-ATPase with ouabain reduced platinum accumulation in A2780 cells but to a lesser extent compared with oligomycin. Western blot analysis revealed lower expression of Na+,K+-ATPase α1 subunit in resistant cells compared with sensitive counterparts. The basal intracellular ATP level (determined using a bioluminescence-based assay) was significantly higher in A2780cis cells than in A2780 cells. Our results highlight the importance of ATP-dependent transport, among other processes mediated by Na+,K+-ATPase, for cisplatin influx in sensitive cells. Cellular platinum accumulation in resistant cells is reduced and less dependent on energy sources, which may partly result from Na+,K+-ATPase downregulation. Our data suggest the involvement of other ATP-dependent processes beside those regulated by Na+,K+-ATPase. Higher basal ATP level in cisplatin-resistant cells, which appears to be a consequence of enhanced mitochondrial ATP production, may represent a survival mechanism established during development of resistance.  相似文献   

11.
The uptake of radio-labeled hemoglobin-haptoglobin complex (Hb-Hp) by human hepatoma PLC/PRF/5 and HepG2 cells was investigated in an attempt to characterize the uptake process and intracellular transport. Human hepatoma cells took up Hb-Hp in a receptor-mediated manner. Scatchard analysis of binding revealed that PLC/PRF/5 and HepG2 cells exhibited about 21,000 and 63,000 haptoglobin receptors/cell, with a dissociation constant (Kd) of 8.0 and 17 nM, respectively. Human hepatocytes in primary culture also expressed about 84,000 receptors/cells, with a Kd of 7.4 nM. The hemoglobin-haptoglobin complex was internalized and subsequently the internalized Hb-Hp was slowly degraded in the cells. Preincubation of the cells with Hb-Hp resulted in a decrease in binding of the radioactive Hb-Hp to the cell surface, and was accompanied with an accumulation of intracellular receptors. The uptake of Hb-Hp by the cells was not inhibited by 100 microM chloroquine or by 10 mM methylamine, but was inhibited by 50 microM monodansylcadaverine. Hemoglobin-heme taken up by the cells induced microsomal heme oxygenase. Thus, human hepatoma PLC/PRF/5 and HepG2 cells can take up Hb-Hp by haptoglobin receptor-mediated endocytosis and Hb-Hp probably causes translocation of the haptoglobin receptors from the cell surface to the cell interior where they can be degraded. The internalized heme-moiety of hemoglobin can regulate the expression of heme oxygenase.  相似文献   

12.
13.
Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation. In summary, these results indicate that the loss of cell surface insulin receptors in adipocytes involves: 1) initial internalization of the receptors to a nondegradative intracellular compartment by a process that is relatively insensitive to ATP depletion, followed by 2) a highly energy-dependent unidirectional translocation of the receptors from this compartment to chloroquine-sensitive site(s) of degradation.  相似文献   

14.
A chloroquine resistant cloned isolate of Plasmodium falciparum, FAC8, which carries an amplification in the pfmdr1 gene was selected for high-level chloroquine resistance, resulting in a cell line resistant to a 10-fold higher concentration of chloroquine. These cells were found to have lost the amplification in pfmdr1 and to no longer over-produce the protein product termed P-glycoprotein homologue 1 (Pgh1). The pfmdr1 gene from this highly resistant cell line was not found to encode any amino acid changes that would account for increased resistance. Verapamil, which reverses chloroquine resistance in FAC8, also reversed high-level chloroquine resistance. Furthermore, verapamil caused a biphasic reversal of chloroquine resistance as the high-level resistance was very sensitive to low amounts of verapamil. These data suggest that over-expression of the P-glycoprotein homologue is incompatible with high levels of chloroquine resistance. In order to show that these results were applicable to other chloroquine selected lines, two additional mutants were selected for resistance to high levels of chloroquine. In both cases they were found to deamplify pfmdr1. Interestingly, while the level of chloroquine resistance of these mutants increased, they became more sensitive to mefloquine. This suggests a linkage between the copy number of the pfmdr1 gene and the level of chloroquine and mefloquine resistance.  相似文献   

15.
Resistance to the antimalarial drug chloroquine has been linked with polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum, yet the mechanism by which this gene confers the reduced drug accumulation phenotype associated with resistance is largely unknown. To investigate the role of pfcrt in mediating chloroquine resistance, we challenged P. falciparum clones differing only in their pfcrt allelic form with the "varying-trans" procedure. In this procedure, movement of labeled substrate across a membrane is measured when unlabeled substrate is present on the trans side of the membrane. If a transporter is mediating the substrate flow, a stimulation of cis-to-trans movement may be observed with increasing concentrations of trans substrate. We present evidence for an association of those pfcrt alleles found in chloroquine-resistant P. falciparum strains with the phenomenon of stimulated chloroquine accumulation under varying-trans conditions. Such an association is not seen with polymorphisms within pfmdr1, which encodes a homologue of the human multidrug resistance efflux pump. Our data are interpreted in terms of a model in which pfcrt is directly or indirectly involved in carrier-mediated chloroquine efflux from resistant cells.  相似文献   

16.
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.  相似文献   

17.
Chloroquine has been shown to both increase insulin binding and decrease intracellular insulin degradation in several target cells. However, whether this increased binding is a consequence of decreased degradation is unclear. Accordingly, we studied the effects of chloroquine on insulin binding to IM-9 cultured lymphocytes, a cell type that does not degrade insulin in the cell interior. In these cells, chloroquine enhanced insulin binding in a dose dependent manner over the concentration range of 100 μM to 1 mM; at 1 mM binding was increased by 70%. Scatchard analysis indicated that chloroquine acted to increase receptor affinity. These studies indicate, therefore, that chloroquine can enhance the binding of insulin to its receptor via a mechanism that is independent of effects on intracellular insulin degradation.  相似文献   

18.
Recent studies suggest that chloroquine resistance is mediated by an energy-dependent saturable chloroquine efflux carrier. An alternative explanation is that resistance is mediated by a channel. In Guinea-Bissau high doses of chloroquine are effective, well-tolerated and commonly used. This suggests that chloroquine resistance can be overcome by higher doses. Research on the mechanism of chloroquine resistance is of utmost importance and should include the effect of higher doses.  相似文献   

19.
Iron metabolism in K562 erythroleukemic cells   总被引:7,自引:0,他引:7  
Iron delivery to K562 cells is enhanced by desferrioxamine through induction of transferrin receptors. Experiments were performed to further characterize this event with respect to iron metabolism and heme synthesis. In control cells, up to 85% of the iron taken up from iron-transferrin was incorporated into ferritin, 7% into heme, and the remainder into compartments not yet identified. In cells grown with desferrioxamine, net accumulation of intracellular desferrioxamine (14-fold) was observed and iron incorporation into ferritin and heme was inhibited by 86% and 75%, respectively. In contrast, complete inhibition of heme synthesis in cells grown with succinylacetone had no effect on transferrin binding or iron uptake. Exogenous hemin (30 microM) inhibited transferrin binding and iron uptake by 70% and heme synthesis by 90%. These effects were already evident after 2 h. Thus, although heme production could be reduced by desferrioxamine, succinylacetone, and hemin, cell iron uptake was enhanced only by the intracellular iron chelator. The effects of exogenous heme are probably unphysiologic and the greater inhibition of iron flow into heme can be explained by effects on early steps of heme synthesis. We conclude that in this cell model a chelatable intracellular iron pool rather than heme synthesis mediates regulation of iron uptake.  相似文献   

20.
MCF-7 human breast cancer cells selected in Adriamycin in the presence of verapamil developed a multidrug resistant phenotype, which was characterized by as much as 100,000-fold resistance to mitoxantrone, 667-fold resistance to daunorubicin, and 600-fold resistance to doxorubicin. Immunoblot and PCR analyses demonstrated no increase in MDR-1 or MRP expression in resistant cells, relative to parental cells. This phenotype is similar to one previously described in mitoxantrone-selected cells. The cells, designated MCF-7 AdVp, displayed a slower growth rate without alteration in topoisomerase IIα level or activity. Increased efflux and reduced accumulation of daunomycin and rhodamine were observed when compared to parental cells. Depletion of ATP resulted in complete abrogation of efflux of both daunomycin and rhodamine. No apparent alterations in subcellular daunorubicin distribution were observed by confocal microscopy. No differences were noted in intracellular pH. Molecular cloning studies using DNA differential display identified increased expression of the alpha subunit of the amiloride-sensitive sodium channel in resistant cells. Quantitative PCR studies demonstrated an eightfold overexpression of the alpha subunit of the Na+ channel in the resistant subline. This channel may be linked to the mechanism of drug resistance in the AdVp cells. The results presented here support the hypothesis that a novel energy-dependent protein is responsible for the efflux in the AdVp cells. Further identification awaits molecular cloning studies. J. Cell. Biochem. 65:513–526. © 1997 Wiley-Liss Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号