首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects induced by different concentrations (50, 75, 100 microM) of the cytostatic drug cisplatin (cDDP) in NIH/3T3 cells were analyzed. Sub-confluent cultures of this mouse fibroblast line, obtained after serum deprivation, showed the presence of aneuploid/polyploid cells with ploidy values ranging from 4c to 24c. DNA content cytofluorometry demonstrated that 50 and 75 microM cDDP induced a cytostatic effect; 100 microM concentration showed lower antiproliferative action. All treatments caused a partial cell detachment and apoptosis, the incidence of which appeared to be cDDP concentration-dependent. Ultrastructural and fluorescence microscopy integrated analyses of the still adherent cells demonstrated the presence of alternative degeneration patterns, especially in polyploid cells, with extensive modifications at both nuclear and cytoplasmic levels. There were events of micronucleation and phenomena of multilobulation and furrows of the nucleus that preceded the formation of heterogeneous fragments. These events were correlated, at cytoplasmic level, with actin reorganization and the appearance of autophagocytotic processes. In our cell model, the same pharmacological treatment was able to induce different cell death phenomena relating to cell dimension and ploidy. More actively proliferating cells (2c-4c DNA content) die throughout canonical apoptosis, while polyploid cells prevailingly degenerate by mechanisms partly referable to autophagic cell death.  相似文献   

3.
New curcumin derivatives are synthesized in order to improve chemical properties of curcumin. The aromatic ring glycosylation of curcumin provides more water-soluble compounds with a greater kinetic stability which is a fundamental feature for drug bioavailability. The glycosylation reaction is quite simple, low cost, with high yield and minimum waste. NMR data show that the ability of curcumin to coordinate metal ion, in particular Ga(III), is maintained in the synthesized products. Although the binding of glucose to curcumin reduces the cytotoxicity of the derivatives towards cisplatin (cDDP)-sensitive and -resistant human ovarian carcinoma cell lines, the compounds display a good selectivity since they are much less toxic against non-tumourigenic Vero cells. The combination of cDDP with the most active glycosyl-curcuminoid drug against both cDDP-sensitive and -resistant as well as against Vero cell lines is tested. The results show an improvement of cDDP efficacy with higher selectivity towards cancer cells than non-cancer cells. These studies indicate the need for developing new valid components of drug treatment protocols to cDDP-resistant cells as well.  相似文献   

4.
Tang S  Huang W  Zhong M  Yin L  Jiang H  Hou S  Gan P  Yuan Y 《Journal of Proteomics》2012,75(8):2352-2360
Multidrug resistance (MDR) to anticancer drugs is a major obstacle to successful chemotherapy of tumors. Understanding the molecular basis to chemoresistance is likely to provide better treatment. Cell lines resistant to cis-diamminedichloroplatinum (CNE2/cDDP) were established from human nasopharyngeal carcinoma (NPC) cell lines CNE2. Comparative proteomics involving 2-dimensional gel electrophoresis (2-DE) and ESI-Q-TOF-MS were performed on protein extracted from CNE2 and CNE2/cDDP cell lines to screen drug resistance-related proteins. Keratin 1 (KRT1), cathepsin D (CTSD) and annexin a5 (ANXA5) were identified as three proteins showing higher expression in CNE2/cDDP compared to CNE2. Furthermore, suppression of KRT1 expression by siRNA resulted in decreased MDR in siRNA-CNE2/cDDP cells. And upregulation of KRT1 could result in increased of drug resistance in NPC cell lines. Taken together, KRT1 protein and its activity levels were higher in cDDP-resistant NPC cell lines compared to their parental cell lines. These data clearly linked KRT1 and cDDP resistance mechanisms. KRT1 could serve as a biomarker for chemotherapy sensitivity of NPC.  相似文献   

5.
This study aimed to investigate the potential beneficial effect of an antioxidant lignan, Schisandrin B (Sch B), against cisplatin (cDDP) induced oxidative stress mediated geno- and neuro-toxicities. A dose of 10 mg/kg cDDP induced considerable genotoxicity in mice, and Sch B treatment attenuated the cDDP-induced DNA damage as assessed by the comet assay in the brain. The frequency of micro-nucleated erythrocyte production in bone marrow was also significantly reduced by Sch B treatment in cDDP-treated mice. In neurobehavioral studies, Sch B significantly prevented the memory deficits induced by cDDP, and had an anxiolytic effect in the elevated plus maze task. Sch B treatment significantly attenuated lipid peroxidation, acetylcholinesterase activity and nitrite levels induced by cDDP. Furthermore, Sch B effectively inhibited NF-κB and p53 activation, and cleaved caspase-3 expression in cDDP-treated mice. Hence, Sch B with potent antioxidant and neuro-protective property with no mutagenic activity would be beneficial complementary food factor against cDDP induced oxidative stress.  相似文献   

6.
Studies were conducted to determine whether the progressive development of anemia associated with the antineoplastic drug cis-diamminedichloroplatinum (cDDP) was the consequence of decreased erythropoietin (Epo) production due to cDDP-induced nephrotoxicity or selective inhibition of erythroid progenitor cells. Five days after a single intraperitoneal injection of cDDP, hypoxia-induced Epo production was not decreased in mice and was increased significantly in rats in spite of severe multifocal tubular necrosis. In both species, colony-forming units-granulocyte macrophage (CFU-gm) and colony-forming units-erythroid (CFU-e) were reduced significantly, with a greater decrease in CFU-e. Studies of an anemic patient receiving cDDP also showed elevated Epo and decreased CFU-gm and CFU-e. In vitro exposure of mouse and human bone marrow to cDDP caused a dose-dependent inhibition of CFU-gm and CFU-e in both species, with human CFU-e showing greatest sensitivity. The results indicate that the primary hematologic toxicity of cDDP is directed at the hematopoietic stem cell compartment.  相似文献   

7.
Thiophosphate (SPO3) was recently shown to promote cysteine insertion at Sec (selenocysteine)-encoding UGA codons during selenoprotein synthesis. We reported previously that irreversible targeting by cDDP [cis-diamminedichloroplatinum(II) or cisplatin] of the Sec residue in TrxR1 (thioredoxin reductase 1) contributes to cDDP cytotoxicity. This effect could possibly be attenuated in cells expressing less reactive Sec-to-cysteine-substituted TrxR1 variants, or pronounced in cells with higher levels of Sec-containing TrxR1. To test this, we supplemented cells with either SPO3 or selenium and subsequently determined total as well as specific activities of cellular TrxR1, together with extent of drug-induced cell death. We found that cDDP became less cytotoxic after incubation of A549 or HCT116 cells with lower SPO3 concentrations (100-300?μM), whereas higher SPO3 (>300?μM) had pronounced direct cytotoxicity. NIH 3T3 cells showed low basal TrxR1 activity and high susceptibility to SPO3 cytotoxicity, or to glutathione depletion. Supplementing NIH 3T3 cells with selenite, however, gave increased cellular TrxR1 activity with concomitantly decreased dependence on glutathione, whereas the susceptibility to cDDP increased. The results suggest molecular mechanisms by which the selenium status of cells can affect their glutathione dependence while modulating the cytotoxicity of drugs that target TrxR1.  相似文献   

8.
Cisplatin is one of the first-line platinum-based chemotherapeutic agents for treatment of many types of cancer, including ovary cancer. CTR1 (copper transporter 1), a transmembrane solute carrier transporter, has previously been shown to increase the cellular uptake and sensitivity of cisplatin. It is hypothesized that increased CTR1 expression would enhance the sensitivity of cancer cells to cisplatin (cDDP). The present study demonstrates for the first time that (-)-epigallocatechin-3-gallate (EGCG), a major polyphenol from green tea, can enhance CTR1 mRNA and protein expression in ovarian cancer cells and xenograft mice. EGCG inhibits the rapid degradation of CTR1 induced by cDDP. The combination of EGCG and cDDP increases the accumulation of cDDP and DNA-Pt adducts, and subsequently enhances the sensitivity of ovarian cancer SKOV3 and OVCAR3 cells to the chemotherapeutic agent. In the OVCAR3 ovarian cancer xenograft nude mice model, the combination of the lower concentration of cDDP and EGCG strongly repressed the tumor growth and exhibited protective effect on the nephrotoxicity induced by cisplatin. Overall, these findings uncover a novel chemotherapy mechanism of EGCG as an adjuvant for the treatment of ovarian cancer.  相似文献   

9.
Cernumidine (CER) is a guanidinic alkaloid isolated from Solanum cernuum leaves. In this work, we investigated the cytotoxicity, chemosensitizing effect of cernumidine to cisplatin (cDDP) and the possible mechanism of action of the combination on bladder cancer cells. Cernumidine showed cytotoxicity and could sensitize bladder cancer cells to cisplatin. The combination of CER+cDDP inhibited cell migration on T24 cells. CER+cDDP down‐regulated MMP‐2/9 and p‐ERK1/2, while it increased EGFR activity corroborating the observed cell migration inhibition. Down‐regulation of Bcl‐2 and up‐regulation pro‐apoptotic Bax and further depletion of the mitochondrial membrane potential (ΔΨm) indicates that mitochondria play a central role in the combination treatment inducing the mitochondrial signaling pathway of apoptosis in T24 cells. Our data showed that the alkaloid cernumidine is worthy of further studies as a chemosensitizing agent to be used in complementary chemotherapy.  相似文献   

10.
11.
Involvement of protein kinase C-delta in DNA damage-induced apoptosis   总被引:6,自引:0,他引:6  
We have previously shown that the protein kinase C (PKC) signal transduction pathway regulates cell death by the DNA damaging agent cis-diamminedichloroplatinum(II) (cDDP). In the present study we have investigated how PKC influences the sequence of events that are triggered by cDDP-induced DNA damage. cDDP caused activation of caspases-8, -9, -3, -7 and cleavage of PKCdelta. Rottlerin, a selective inhibitor of novel PKCdelta, blocked activation of caspases, proteolytic activation of PKCdelta and cell death induced by cDDP. In contrast, G? 6976, an inhibitor of conventional PKCalpha and betaI, did not prevent cDDP-induced caspase activation and cDDP cytotoxicity. In HeLa cells, PKCdelta was distributed both in the cytosol and heavy membrane (HM) fraction containing mitochondria. While caspase-8 was primarily cytosolic, a small amount of caspases-9, -7 and -3 could be detected in the HM fraction. cDDP caused a time-dependent increase in Cytochrome c release from the mitochondria and processing of both cytosolic and membrane-associated caspases, as well as proteolytic cleavage of PKCdelta. Rottlerin attenuated late but not early release of Cytochrome c by cDDP. It, however, inhibited activation of caspases and proteolytic cleavage of PKCdelta in both cytosolic and HM fractions. The antiapoptotic effect of rottlerin was evident when it was added together with or following cDDP addition but not when added after cDDP was removed from the medium. Thus, the PKCdelta inhibitor acts at an early stage of the cDDP-induced cell death pathway that precedes caspase activation.  相似文献   

12.
Six bipyridyl complexes of platinum(II) with thiourea, with different substituents on thiourea moiety [Pt(bipy)(R,R'NCSNR',R')(2)]Cl(2) (bipy=2,2'-bipyridine: R=R'=R'=R' =H; R=Me, R'=R'=R'=H; R=n-Bu, R'=R'=R'=H; R=Et, R'=H, R'=Et, R'=H; R=p-tolyl, R'=R'=R'=H; R=phenyl, R'=H, R'=phenyl, R'=H), rationally designed to intercalate into DNA, have been tested against a cisplatin (cDDP)-sensitive human ovarian carcinoma cell line (2008) and its -resistant variant (C13( *)). We show here that the anti-proliferative efficacy of these drugs was dependent on molecular structure, since it increased with ancillary ligand bulkiness and hydrophobicity of substituents on thiourea moiety. In particular, the presence of two phenyl groups on thiourea moiety confers an outstanding cytotoxicity. The increasing cell growth inhibition along the series of complexes partially paralleled with drug accumulation, particularly in resistant cells, but not with drug intercalation into DNA since all compounds exerted comparable ethidium bromide displacement ability. The cDDP-resistant phenotype seems, at least in part, to be involved in the action of these compounds, since the level of cross-resistance established for most complexes appeared to be in agreement with the observed impairment of drug accumulation in the resistant subline. These findings indicate that resistance to alkylating agents such as cDDP confers low level of cross-resistance to this class of DNA intercalators, which, however, depending on substituents on thiourea moiety may present remarkable cell growth inhibition even of resistant cells.  相似文献   

13.
Carotenoids are regarded as effective antioxidants, antimutagenic and anticarcinogenic agents. Annatto, a red-yellow extract obtained from seeds of Bixa orellana L. is a mixture of several carotenoids and one of them bixin (BXN), is known as its major coloring compound. Studies on BXN clastogenicity and anticlastogenicity in cultured human lymphocytes have not been reported so far. Therefore, the present study was undertaken to investigate the ability of BXN to induce chromosomal aberrations in human lymphocytes in vitro and to examine the possible anticlastogenic effect of this carotenoid in chromosomal damage induced by the clastogen cisplatin (cDDP). Human blood samples were obtained from six healthy, non-smoking volunteers; two females and four males aged 18-35 years. The concentrations of BXN (1.0; 2.5; 5.0 or 10 microg/mL) tested in combination with cDDP were established on the basis of mitotic index (MI) measurements. The data showed that BXN was not cytotoxic or clastogenic, when compared to untreated control. A marked decrease in the MI values compared to the untreated control and an increased percentage of aberrant metaphases was seen in all cultures treated with cDDP. The carotenoid efficiency in reducing the inhibitory effect of cDDP on lymphocyte MI is concentration-dependent. Cultures simultaneously treated with BXN and cDDP showed a statistically significant reduction in total chromosomal aberrations and aberrant metaphases. In our experiments, BXN may have acted as an antioxidant by intercepting free radicals generated by cDDP. The data obtained in the present study suggest that dietary carotenoids may act as protective agents against clastogenic effects of antitumor agents. However, extensive studies are necessary to elucidate the mechanism of action of BXN before its therapeutic use.  相似文献   

14.
Basu A  Akkaraju GR 《Biochemistry》1999,38(14):4245-4251
Activation of caspases is critical for the induction of apoptosis. We have shown previously that cell death mediated by the anticancer agent cis-diamminedichloroplatinum(II) (cDDP) is influenced by the protein kinase C (PKC) signal transduction pathway. In the present study, we have examined whether regulation of cDDP sensitivity by PKC involves caspase activation. cDDP caused a time- and concentration-dependent increase in the generation of the catalytic fragment (CF) of novel (n) PKCdelta, nPKCepsilon, and atypical (a) PKCzeta but had little effect on conventional (c) PKCalpha. Cleavage of PKC isozymes was associated with the activation of caspase-3 and -7 but not of caspase-2. PKC activators enhanced cDDP-induced cleavage of these isozymes and activation of caspase-3. Rottlerin, an inhibitor of nPKCdelta, blocked caspase-3 activation and proteolytic cleavage of nPKCdelta by cDDP. Bryostatin 1, which elicits a biphasic concentration-response in potentiating cell death by cDDP, exhibited a similar biphasic effect on cDDP-induced activation of caspase-3 and caspase-7 and the cleavage of poly(ADP-ribose) polymerase; while 1 nM bryostatin 1 induced maximum activation of these caspases, 1 microM bryostatin 1 had little effect. z-DEVD-fmk, an inhibitor of caspase-3-like proteases, prevented cDDP-induced cell death. Bryostatin 1 also induced a similar biphasic down-regulation of nPKCdelta but not of cPKCalpha or nPKCepsilon. These results suggest that nPKCdelta not only acts downstream of caspases but also regulates the activation of caspases and that the biphasic concentration response of bryostatin 1 on cDDP-induced cell death could be explained by its distinct effect on nPKCdelta down-regulation and caspase activation.  相似文献   

15.
6-methylated guanine dinucleotides were used to study the influence of hydrogen bonding on the specific binding of the antitumor drug cDDP, cis-PtCl2(NH3)2, to DNA. In this interaction, the guanine-06 site appears to be important in explaining the preference for a pGpG-N7(1),N7(2) chelate, which results from H-bridge formation with the ammine ligand of cDDP. Guanine-06 methylated dinucleotides and the nonmodified dinucleotides were reacted with [Pt(dien)Cl]+, cis-PtCl2(NH3)2, and cis-[Pt(NH3)2(H2O)2]2+ and the reaction products were characterized by 1H NMR using pH titrations. Methylation at guanine-06 clearly reduces the preference for the guanine. In competition experiments monitored by NMR and experiments using UV spectrophotometry a decreasing reactivity towards [Pt(dien)(H2O)]2+ and cis-[Pt(NH3)2(H2O)2]2+ was found, in the order of d(GpG) greater than d(GomepG) greater than d(GpGome) greater than d(GomepGome). The difference in reactivity between 5' guanine methylation and 3' guanine methylation is ascribed to differences in the H-bond formation with the backbone phosphate. The resulting reduced stacking of the bases in both modified dinucleotides, compared to the bases in d(GpG), results in a preference for the 3' guanine over 5'.  相似文献   

16.
Acquired resistance to cisplatin (cDDP) is a multifactorial process that represents one of the main problems in ovarian cancer therapy. Distamycin A is a minor groove DNA binder whose toxicity has limited its use and prompted the synthesis of derivatives such as NAX001 and NAX002, which have a carbamoyl moiety and different numbers of pyrrolamidine groups. Their interaction with a B-DNA model and with an extended-TATA box model, [Polyd(AT)], was investigated using isothermal titration calorimetry (ITC) to better understand their mechanism of interaction with DNA and therefore better explain their cellular effects. Distamycin A interactions with Dickerson and Poly[d(AT)(6)] oligonucleotides show a different thermodynamic with respect to NAX002. The bulkier distamycin A analogue shows a non optimal binding to DNA due to its additional pyrrolamidine group. Cellular assays performed on cDDP-sensitive and -resistant cells showed that these compounds, distamycin A in particular, affect the expression of folate cycle enzymes even at cellular level. The optimal interaction of distamycin A with DNA may account for the down-regulation of both dihydrofolate reductase (DHFR) and thymidylate synthase (TS) and the up-regulation of spermidine/spermine N1-acetyltransferase (SSAT) caused by this compound. These effects seem differently modulated by the cDDP-resistance phenotype. NAX002 which presents a lower affinity to DNA and slightly affected these enzymes, showed a synergic inhibition profile in combination with cDDP. In addition, their combination with cDDP or polyamine analogues increased cell sensitivity to the drugs suggesting that these interactions may have potential for development in the treatment of ovarian carcinoma.  相似文献   

17.
Curcumin (CMN) is the principal active component derived from the rhizome of Curcuma longa (Curcuma longa L.). It is a liposoluble polyphenolic compound that possesses great therapeutic potential. Its clinical application is, however, limited by the low concentrations detected following oral administration. One key strategy for improving the solubility and bioavailability of poorly water-soluble drugs is solid dispersion, though it is not known whether this technique might influence the pharmacological effects of CMN. Thus, in this study, we aimed to evaluate the antioxidant and antigenotoxic effects of CMN formulated in a solid dispersion (CMN SD) compared to unmodified CMN delivered to Wistar rats. Cisplatin (cDDP) was used as the damage-inducing agent in these evaluations. The comet assay results showed that CMN SD was not able to reduce the formation of cDDP-DNA crosslinks, but it decreased the formation of micronuclei induced by cDDP and attenuated cDDP-induced oxidative stress. Furthermore, at a dose of 50 mg/kg b.w. both CMN SD and unmodified CMN increased the expression of Tp53 mRNA. Our results showed that CMN SD did not alter the antigenotoxic effects observed for unmodified CMN and showed effects similar to those of unmodified CMN for all of the parameters evaluated. In conclusion, CMN SD maintained the protective effects of unmodified CMN with the advantage of being chemically water soluble, with maximization of absorption in the gastrointestinal tract. Thus, the optimization of the physical and chemical properties of CMN SD may increase the potential for the therapeutic use of curcumin.  相似文献   

18.
In the process of drug discovery the lead-identification phase may be critical due to the likely poor safety profile of the candidates, causing the delay or even the abandonment of a certain project. Nowadays, combining molecular modeling and in vivo cellular evaluation can help to identify compounds with an enhanced safety profile. Previously, two quinoxalines have been identified as inhibitors of the folate-dependent proteins belonging to the thymidylate synthase cycle. Unfortunately, cytotoxic activity against a panel of cisplatin(cDDP)-sensitive ovarian carcinoma cell lines and their resistant counterparts was coupled with toxicity to non-tumorigenic Vero cells. Here we describe the application of a ligand-based virtual screening, and several [1,2,4]triazolo[4,3-a]quinoxalines were optimized to improve their ADME-tox profile. The resulting 4-(trifluoromethyl)-1-p-tolyl-[1,2,4]triazolo[4,3-a]quinoxaline (24), which interferes intracellularly with DHFR and TS reducing the protein levels like 5-FU, but without inducing TS ternary complex formation, was 2-times less toxic in vitro than cisplatin and 5-FU.  相似文献   

19.
金属硫蛋白与医学   总被引:23,自引:0,他引:23  
金属硫蛋白是一类富含巯基与金属的内源性蛋白,化学结构极为特殊,该蛋白的为具有很强的诱导性,金属,糖皮质激素,某些化的和应激状态均可诱导其生成,在炎症等应激过程中IL-6可能为诱导者。在不降低疗效的情况下该蛋白可解除抗肿瘤药物CDDP的抗药性密切有关,金属硫蛋白与炎性肠病,妊娠中毒症,肝脏疾患等多种疾病密切相关。  相似文献   

20.
Proliferation dependence of topoisomerase II mediated drug action   总被引:19,自引:0,他引:19  
Topoisomerase II mediated DNA scission induced by both a nonintercalating agent [4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene-beta-D-glucopyranoside) (VP-16)] and an intercalator [4'-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA)] was studied as a function of proliferation in Chinese hamster ovary (CHO), HeLa, and mouse leukemia L1210 cell lines. Log-phase CHO cells exhibited dose-dependent drug-induced DNA breaks, while plateau cells were found to be resistant to the effects of VP-16 and m-AMSA. Neither decreased viability nor altered drug uptake accounted for the drug resistance of these confluent cells. In contrast to CHO cells, plateau-phase HeLa and L1210 cells remained sensitive to VP-16 and m-AMSA. Recovery of drug sensitivity by plateau-phase CHO cells was found to reach a maximum approximately 18 h after these cells regained exponential growth and was independent of DNA synthesis. DNA strand break frequency correlated with cytotoxicity in CHO cells; log cells demonstrated an inverse log linear relationship between drug dose (or DNA damage) and colony survival, whereas plateau-derived colony survival was virtually unaffected by increasing drug dose. Topoisomerase II activity, whether determined by decatenation of kinetoplast DNA, by cleavage of pBR322 DNA, or by precipitation of the DNA-topoisomerase II complex, was uniformly severalfold greater in log-phase CHO cells compared to plateau-phase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号