首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary The ependymal cells bordering the median eminence to the third ventricle are characterised by many microvillus-like projections and bulbous cell processes of the luminal plasma membrane. The latter contain many vesicles 500–1,000 Å in diameter. Cilia with 9+2 fibrillar pattern are seen occasionally. Adhesive devices in the from of zonula adhaerens and zonula occludens are found in the apical part of the intercellular junction. Unmyelinated nerve fibres with a mean diameter of 1 and containing many electron dense granules of 830–1,330 Å are often seen between the ependymal cells.Two types of glial cells are found in the median eminence. One is characterised by a nucleus with dense blods of chromatin and dense cytoplasm, and it is associated chiefly with the nerve fibres in the region of the hypothalamo-hypophysial tract. The other type of glial cell is characterised by fine, uniformly distributed chromatin in the nucleus and a relatively pale cytoplasm and branched processes which terminate perivascularly in the base of the median eminence.Myelinated nerve fibres are seen only in the region of the hypothalamo-hypophysial tract. Only a part of them contain electron dense granules 1,330–2,330 Å in diameter.Three types of unmyelinated nerve fibres can be distinguished in the median eminence according to the size of the electron dense granules they contain: 1. Nerve fibres containing granules 1,330–2,330 Å in diameter. They are seen primarily in the hypothalamo-hypophysial tract, but also in the zona externa; 2. those containing granules with a mean diameter of 1,330 Å; and 3. those containing granules with a mean diameter of 1,000 Å. The last two types are both encountered in the hypothalamo-hypophysial tract, the zona externa and the perivascular region of the base of the median eminence. Under high magnification, the membrane of the granules show evidence of a trilaminar structure and the content of the granules with a low electron density appeares to consist of small microvesicles or globular components. Besides granules, these nerve fibres contain vesicles mostly 420 Å in diameter whose relative number increases towards the perivascular nerve endings. 53 per cent of the inclusions in the hypothalamo-hypophysial tract are granules and 47 per cent vesicles, while the corresponding percentages for the zona externa are 40 and 60 and for the perivascular nerve endings 20 and 80.The mean width of the pericapillary space is 1 , but it varies greatly. It containes many collagen fibrils and fibroblasts. The capillary endothelium is frequently fenestrated and contains many vesicles of various sizes.Two types of granules-containing cells are found in the pars tuberalis depending on the size of the electron dense granules: 1. cells containing granules with a mean diameter of 1,330 Å: and 2. cells containing granules with a mean diameter of 2,000 Å. In addition, there are occasional follicular cavities filled with amorphous material, microvilli and cilia of 9+2 fibrillar pattern.Aided by a grant from the Sigrid Jusélius Stifteise.  相似文献   

2.
Summary In the frog median eminence, fixed with glutaraldehyde and osmium tetroxide, four types of nerve endings can be generally distinguished. These endings are in contact with the pericapillary spaces of primary portal vessels and can be identified by the internal structure and the size of their granules and vesicles. Type 1 contains large granules (1500–2400 Å in diameter) and small clear vesicles (300–500 Å in diameter), type 2 intermediate granules (about 1100–1700 Å in diameter) and small clear vesicles, type 3 small granules (about 600–1000 Å in diameter) and small clear vesicles, type 4 only numerous small clear vesicles. The mixed types containing the large, intermediate and small dense granules in the same ending are infrequently found.After KMnO4 or LiMnO4 fixation the granules and vesicles mentioned above are observed as follows. The large granules in the type 1 nerve ending appear mostly pale or less-dense. The intermediate granules in the type 2 also appear mostly pale or less-dense, but some frequently show granules of high density. The small granules in the type 3 consistently contain the dense substance and these endings can be subdivided into two different types according to the populations of different sizes of dense granules [type 3a (900–1000 Å) and type 3b (500–800 Å)]. Dense-cored and cleared-synaptic vesicles are frequently present with together in the type 3 endings. The small vesicles (300–400 Å), in the type 4, appear generally pale (type 4a), but some nerve endings contain small dense cored-vesicles (type 4b).The author wishes to thank Prof. H. Fujita for his advice and criticism.  相似文献   

3.
Summary According to the internal structure and size of the granules, six types of nerve endings can be distinguished in the toad median eminence: 1. Endings containing mostly dense granules of 600 Å in diameter; 2. Endings containing dense granules of about 800 Å in diameter; 3. Endings which contain dense granules 1,000–2,000 Å in diameter, with the peak at 1,200–1,400 Å; 4. Endings containing granules with a characteristic structure, which differentiate them from the other three types; 5. Scarce endings containing granules 2,000 to 3,800 Å in diameter; and 6. Endings containing only vesicles 400–500 Å in diameter. Types 3 and 4 endings are mainly found in the outer pericapillary zone, and are probably responsible for the strong Gomori-positive reaction observed in this zone. The other four types of endings occur mainly in the inner pericapillary zone, and appear to be Gomori-negative.The probable origins of the different types of endings, and their possible relations with the different releasing factors is discussed.The subendothelial basement membrane has numerous long processes which form a complicated network in contact with all the nerve endings, some nerve fibres and glial cells.Two types of glial cells are described. Pinocytotic vesicles are frequently seen at the points where these cells contact the basement membrane. All the ultrastructural features suggest that these cells are carrying out transport functions.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.The author is very grateful to Professor H. Heller for his continued encouragement and criticism and to Mr. J. Lane and Mr. P. Heap for their valuable help.  相似文献   

4.
Summary In the median eminence of the newt a medial region and two lateral regions are described.In cross section, the medial region appears to be made up of 1) an outer or glandular zone (Zone I) containing aldehyde-thionine-positive and negative nerve fibres and blood capillaries. Nerve fibres appear aligned in palisade array along the capillaries. 2) An inner zone (Zone II) made up of a) a layer of aldehyde-thionine-positive nerve fibres (fibrous layer) belonging to the preoptic hypophyseal tract and b) a layer of ependymal cells lining the infundibular lumen and reaching the blood vessels with their long processes.The lateral regions display a less pronounced stratification and aldehyde-thionine positive nerve fibres are nearly absent.A slender lamina (ependymal border) containing mainly aldehyde-thionine-positive nerve fibres and ependymal cells connects the median eminence to the pars nervosa.At the ultrastructural level, in the outer zone of the medial region at least 4 types of nerve fibres and nerve endings are identified:Type I nerve fibres containing granular vesicles of 700–1000 Å and clear vesicles (250–400 Å).Type II nerve fibres containing granular vesicles and polymorphous granules of 900–1300 Å and clear vesicles (250–400 Å).Type III nerve fibres containing dense granules of 1200–2000 Å and clear vesicles of 250–400 Å.Type IV nerve fibres containing only clear vesicles of 250–400 Å. In the inner zone too, all these nerve fiber types are found among ependymal cells, while the fibrous layer consists of nerve fibres containing granules of 1200–2000 Å in diameter.In the lateral regions Type I, Type II and Type IV nerve fibres and their respective perivascular terminals are found; axons containing dense granules (1200–2000 Å) are scanty. In these regions typical synapses between Type I nerve fibres and processes rich in microtubules are visible.The classification and functional significance of nerve fibres in the median eminence are still unsolved, but it may be assumed that nerve fibres of the medial region belong to both the preoptic hypophyseal and tubero hypophyseal tract, while the lateral regions are characterized by nerve fibres of the tubero hypophyseal tract. Peculiar specializations of the ependymal cells in the median eminence of the newt are also discussed.Work supported by a grant from the Consiglio Nazionale delle Ricerche.The authors are indebted to Mr. G. Gendusa and P. Balbi for technical assistance.  相似文献   

5.
Summary Pituicytes of Rana pipiens could be classified into two types, pale and dense, according to their relative densities of cytoplasm and the populations of free ribosomes and cell organelles. An intermediate type of pituicyte was also recognized.Lipid droplet such as are typical in the cytoplasm of mammalian pituicytes, are not in the cytoplasm of either types of frog pituicyte. Both types have long cytoplasmic processes which run among the nerve fibers, and some of them end at the pericapillary space.Nerve endings making synapse-like contacts with the cell bodies or the processes of the pituicyte are frequent. According to the structures and sizes of granules and vesicles in the nerve endings, these endings are classified into one of three types: 1) A, which appears to be a peptidergic neuronal ending containing dense granules 1,200–2,000 Å in diameter and small clear vesicles 300–400 Å in diameter; 2) B, which appear to be monoaminergic endings containing cored vesicles 600–1,000 Å in diameter and small clear vesicles 300–500 Å in diameter; 3) C, which appear to be cholinergic endings containing only small clear vesicles. Type C endings are relatively rare. In the synaptic area the axonal membranes appose those of the pituicytes across a gap of about 200 Å and numerous presynaptic vesicles are clustered or accumulated near the presynaptic membranes.The author wish to express his hearty thanks Professor Dr. A. Gorbman, Zoology Department, University of Washington, Seattle, U.S.A. and Professor Dr. H. Fujita for their helpful advices and criticisms. The frog tissues were obtained and fixed in Professor A. Gorbman's laboratory supported by U.S.P.H.S. grant NS 04887.  相似文献   

6.
Summary The ultrastructural changes taking place in the median eminence of Bufo bufo 3 hours to 4 months after transection of the brain at different levels, are described.5 types of neurons in the zona externa of the median eminence of normal toads are described. All types of neurons degenerate, and profound changes of the ultrastructure of the capillaries are observed after transection just behind, or immediately in front of the optic chiasma. A few neurons containing dense granules with a diameter of about 1,000–1,300 Å remain intact, however. The degeneration following denervation in front of the optic chiasma was considerably delayed compared to degeneration after denervation behind the optic chiasma.After transection more rostral to the optic chiasma, no significant degeneration of the median eminence was observed.The results are discussed with regard to degenerative dynamics and origin of the different nerve types. It is concluded, that all types of neurons terminating in the median eminence, originate at a level between the caudal and rostral parts of the preoptic nucleus, some fibres, however, containing dense, 1,000–1,300 Å granules, originate caudally to the optic chiasma, in the posterior hypothalamus.Part of this study was presented at the Vth International Symposium on Neurosecretion, Kiel, Germany, August 1969.  相似文献   

7.
Summary The correlation of dopamine (DA)-, noradrenaline (NA)- or serotonin (5HT)-containing neurons and thyrotropin releasing hormone (TRH)-containing neurons in the median eminence of the rat, as well as the coexistence of monoamines (MA) and TRH in the neurons, were examined by subjecting ultrathin sections to a technique that combines MA autoradiography and TRH immunocytochemistry. The distribution and localization of silver grains after 3H-MA injection were examined by application of circle analysis on the autoradiographs.TRH-like immunoreactive nerve terminals containing the immunoreactive dense granular vesicles were found to have an intimate contact with monoaminergic terminals labeled after 3H-DA, 3H-NA or 3H-5HT infusion in the vicinity of the primary portal capillaries in the median eminence. Synapses between TRH-like immunoreactive axons and MA axons labeled with silver grains, however, have not been observed to date. Findings suggesting the coexistence of TRH and MA in the same nerve terminals or the uptake of 3H-MA into TRH-like immunoreactive nerve terminals, where silver grains after 3H-MA injection were concurrently localized in TRH-like immunoreactive nerve terminals, were rarely observed in the median eminence. Percentages of the nerve terminals containing both immunoreactive granular vesicles and silver grains after 3H-MA injection to total nerve terminals labeled after 3H-MA infusion silver grains were equally very low in 3H-DA, 3H-NA or 3H-5HT, amounting to less than 6.1%.This work was supported in part by grant-in-aid for scientific research from the Japan Ministry of Education (No. 557018).  相似文献   

8.
Shioda  S.  Nakai  Y. 《Cell and tissue research》1983,228(3):475-487
Immunocytochemical and autoradiographic localization of thyrotropin-releasing hormone (TRH)- and 3H-TRH-binding sites was studied in the arcuate nucleus-median eminence region of the rat. TRH-like immunoreactivity was found in dense granular vesicles (90-140 nm in diameter) in TRH-like immunoreactive nerve fibers and terminals. In the median eminence, the immunoreactive terminals were observed to be in direct contact with the perivascular basal lamina of the portal vessel and to form synaptoid contacts with tanycytes. In the arcuate nucleus, the immunoreactive terminals were often found to form axosomatic and axo-axonic, and/or axo-dendritic synapses. The uptake of tritiated TRH into the nerve fibers and terminals of the median eminence was also observed by autoradiography and the distribution and localization of silver grains in them were analyzed quantitatively by circle analysis. Thirty minutes after intraventricular infusion of 3H-TRH, radioactive labeling occurred in type-2 and 3-nerve fibers and terminals containing dense granular vesicles in the median eminence. It is therefore suggested that the neurons labeled after 3H-TRH infusion possess certain functions as physiological recognition sites or receptors for TRH.  相似文献   

9.
Summary The fine localization of rat pineal serotonin has been studied by means of electron microscopic autoradiography. Two hours after the intravenous injection of tritium labelled 5-hydroxytryptophan, the location of large number of silver tangled threads is seen in the sympathetic nerve terminals. There is also a less specific accumulation of the silver grains in the pinealocytes, some appearing in the cytoplasmic organelles and some in the nucleus.In quantitative terms, 43% of the total count of silver grains were in the nerve endings whereas pinealocytes, which comprise a much larger volume of the section, contain a proportionally much smaller number of silver particles (53%). Furthermore the perivascular spaces, which comprise a larger percentage in volume of the section than the nerve endings has nevertheless only about 4% of the grains counted.Although the precise localization of the silver grains is obscure, the reaction of the granulated vesicles in the nerve terminals to the double fixation used, is similar to that shown by the extremely dense material in vesicles of platelets, which was demonstrated to contain serotonin. The results therefore suggest that the silver grains appearing in the nerve terminals two hours after the administration of 5-hydroxytryptophan are in the serotonin binding site in the axon terminals, containing the granulated vesicles.  相似文献   

10.
Résumé L'éminence médiane et la pars nervosa de Rana esculenta diffèrent du point de vue de leur structure.L'éminence médiane se compose de 2 zones différentes: la zone externe placée près du lobe distal et la zone interne située sous l'épendyme. Dans la zone externe, on distingue, d'après la taille et la forme des grains de sécrétion, 5 types de terminaisons.1. des terminaisons avec de fins granules sphériques denses de 800 à 1000 Å de diamètre; 2. des terminaisons avec des granules de 1000 à 1200 Å de diamètre; 3. des terminaisons avec des grains de forme irrégulière de diamètre supérieur aux précédents (1200 à 1600 Å); 4. des terminaisons avec de volumineux grains denses sphériques d'environ 1200 à 1800 Å de diamètre; 5. un petit nombre de terminaisons ne contenant que des vésicules. Les terminaisons des catégories 3 et 4 sont probablement du type neurosécrétoire.La zone interne contient de nombreuses fibres neurosécrétrices. Elles sont de 2 types, l'une avec de gros granules (1600–2400 Å), l'autre avec des granules moins volumineux (1300–2000 Å). Des fibres non neurosécrétrices ont également été observées.Dans la pars nervosa, on rencontre deux types principaux de fibres neurosécrétrices, l'une avec des grains denses de 1600 à 2400 Å de diamètre, l'autre avec des grains moins denses d'environ 1300 à 2000 Å de diamètre. Dans la zone externe bordant la pars intermedia des fibres aminergiques avec de fines granulations ont été observées.
Electron microscopic study of the neurohypophysis of Rana esculenta L.
Summary The median eminence and the pars nervosa of Rana esculenta have a different structure.The median eminence has 2 different zones: the outer zone situated near the pars distalis and the inner zone under the ependyme. In the outer zone there are, according to the size and the shape of the granules, 5 types of nerve terminals.1. Endings containing spherical fine dense granules of 800 to 1000 Å in diameter; 2. Endings with spherical granules from 1000 to 1200 Å in diameter; 3. Endings with granules of irregular shape which are bigger than the former (1200 to 1600 Å); 4. Endings with spherical dense granules of about 1200 to 1800 Å in diameter; 5. A few endings containing only clear vesicles. Type 3 and type 4 endings are probably neurosecretory.The inner zone contains numerous neurosecretory fibres. They are of two types: one with big granules (1600–2400 Å), the second with smaller granules (1300–2000 Å). Non-neurosecretory fibres have also been observed.The pars nervosa contains two principal types of neurosecretory fibres: one with dense granules of 1600 to 2400 Å in diameter, the other with lighter granules of about 1300 to 2000 Å. In the external zone lining the pars intermedia, aminergic fibres with fine granules have been observed.
Je tiens à exprimer mes vifs remerciements, à Monsieur le Professeur E. Follenius pour l'intérêt constant qu'il prend à ce travail. Je remercie également Madame R. O. Clauss, collaboratrice technique et Madame Schwoerer, photographe, pour leur aide précieuse.  相似文献   

11.
Summary The pars nervosa of Klauberina riversiana belongs to a primitive tetrapod type which is characterized by the deep penetration of the infundibular recess, a thin-walled structure, and the virtual absence of pituicytes. The differential response of this gland to aldehyde fuchsin and periodic acid Schiff suggests the presence of two types of neurosecretory nerve endings. Ultrastructurally four kinds of nerve endings are distinguishable. Type I, probably a cholinergic nerve ending, contains only small clear vesicles ca. 400 Å in diameter. The relative abundance of cholinergic nerve endings in this pars nervosa may be related to the necessity of transporting hormone through the ependymal cell. Type II, containing granulated vesicles about 1,000 Å in diameter and probably aminergic, is very rare. The two remaining types apparently secrete neurohypophysial hormones. They are Type III, containing dense granules ca. 1,500 Å in diameter and Type IV containing pale granules ca. 1,500 Å in diameter. Evidence is reviewed which suggests that Type III nerve endings may secrete arginine vasotocin while Type IV endings may secrete (an)other hormone(s).All these axons end only on the ependymal cells, the vascular processes of which form a continuous cuff over the basement membranes of the blood vessels. Hence the ependymal cells link the cerebrospinal fluid, the nerve endings and the blood vessels. Particles resolvable with the electron microscope are traced through a possible transport pathway from the granules, through the ependymal cells to the basement membrane. It is suggested that pituicytes replace ependymal cells and assume their transport functions in animals with massive neural lobes containing large numbers of nerve endings and blood vessels.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.This investigation was supported in part by a Public Health Service fellowship 1 FZ HD 32,949-01 REP from the national Institute of Child Health and Human Development.The authors wish to thank Professor H. Heller for his constant interest and constructive criticism.  相似文献   

12.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

13.
Summary The primary plexus of the toad hypothalamic-adenohypophysial portal system has two types of loops. The short loops are localized in the external region of the median eminence and surrounded by nerve endings and glial cells. The long loops approach the ependymal lining of the median eminence. The ascending and descending branches of these loops are surrounded by nerve and ependymal endings and glial cells. The actual subependymal portion of the long loops is virtually in contact with ependymal processes only, which form a cuff interposed between this portion of the long loops and the fibres of the hypothalamic-neurohypophysial tract. Many of the vascular endings of the ependymal processes have electron dense granules whose diameter ranges between 700 and 1400 Å. The ultrastructure of the ependymal cells suggests that these granules are transport material and not secretory material.This anatomical arrangement linking the ependyma of the median eminence and the long loops of the primary plexus of the hypothalamic-adenohypophysial portal system makes the possibility of an interrelationship between the cerebrospinal fluid and the portal blood very considerable.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. The author takes great pleasure in thanking Prof. H. Heller for his constant interest and criticism.  相似文献   

14.
Summary Fine structural observations were made on the vesicle and granule content of ganglion cells in the posterior subclavian ganglion and peripheral nerve fibers of the upper forelimb of the newt Triturus. The populations of vesicles and granules in normal ganglion cells and nerve fibers were compared with those observed after limb transection. In normal neurons, clear vesicles range in size from 250 to 1000 Å in diameter, but are most frequently 400–500 Å. Vesicles with dense contents (granules) also vary greatly in size, but most are 450–550 Å in diameter and correspond to dense-core vesicles. Large granules that contain acid phosphatase activity are thought to be lysosomes. During limb regeneration, in both the ganglion cells and peripheral nerves, the ratio of dense vesicles to clear vesicles increases. There is a large increase in number of dense granules with a diameter over 800 Å, particularly in the peripheral regenerating fibers. This study shows that regenerating neurons differ from normal in their content of vesicular structures, especially large, membrane-bounded granules.This work was supported by grants from the National Science Foundation (GB 7912) and from the National Cancer Institute (TICA-5055), National Institutes of Health, United States Public Health Service.  相似文献   

15.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

16.
The projection from the medial preoptic area to the median eminence of the cat was clarified by electron microscopy. After placing the electrolytic lesion in the preoptic area several kinds of degenerating neuronal processes and terminals were observed in the external layer of the median eminence. The one was dark shrunk terminals containing dense cored vesicles, the other was the dark ones containing myeline figure-like structure. The relationship between catecholamine-containing nerve endings and RH/IH-containing endings in the external layer of the median eminence was discussed.  相似文献   

17.
Summary Several types of neurosecretory fibers were observed in the normal infundibulum of the frog. After transection of the median eminence, these neurosecretory fibers of the proximal stump reacted asynchronously, but followed approximately the same pattern: a passive accumulation of granules observed early after the transection was followed by an active axonal reaction with the appearance of numerous tubular formations which are thought to be related to the Golgi apparatus. They filled the axon almost completely, and then became dilated and filled with an electron dense material. Subsequently these dilatations pinched off and gave origin to new neurosecretory granules. These locally packed granules plus others which were probably formed in more proximal parts of the axon, and the perikaryon and then transported distally, accumulated in the proximal axonal stumps and started to fill the fibers retrogradely.There was a parallelism between the increase of tubular formations and neurosecretory granules larger then 1,500 Å in diameter, on one side, and the vasopressor activity of the proximal stump, on the other. The latter increased at an approximate rate of 1 mU/stump/day.The regeneration of the fibers of the hypothalamo-median eminence system is suggested by the presence in the proximal stump of fibers filled with granules smaller than 1,000 Å in diameter (normally seen in the median eminence) and the fact that 40% of the vasopressor activity of the extracts was not abolished by the thioglycollate treatment, which could be due to the presence of vasopressor amines other than adrenaline. The appearance towards the end of the observation period of a few nerve endings of several types contacting the perivascular basement membrane of vessels of the proximal stump would indicate that the neural lobe and median eminence functions were being reestablished, at least partially.This investigation was supported by grants 5RO1 NB 06641 NEUA and 5RO1 NB 07492 NEUA from the National Institute of Health and by the Space Sciences Research Center of the University of Missouri. The authors wish to thank Mrs. G. Clark, Mr. G. Ribas and Mr. R. Faup for their valuable technical help.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.  相似文献   

18.
The distribution of melanin-concentrating hormone (MCH) in the central nervous system of the frog Rana ridibunda was determined by the indirect immunofluorescence technique using antibodies against synthetic salmon MCH, generated in rabbits. The most prominent group of MCH-like containing perikarya was detected in the preoptic nucleus. Comparatively, a moderate number of cell bodies was observed in the dorsal infundibular nucleus and in the ventral thalamic area. Brightly immunofluorescent nerve bundles were found in the preoptic nucleus and in the ventral infundibular nucleus, coursing towards the internal zone of the median eminence and the pituitary stalk. An intense network of immunofluorescent fibers was localized in the neural lobe of the pituitary. The subcellular localization of MCH-like material was studied in the neurohypophysis using the immunogold technique. It was demonstrated that MCH-like material was contained in dense core vesicles (80–90 mm in diameter) within specific nerve terminals. The present findings indicate that, in amphibians, MCH-like peptide is located in specific hypothalamic neurons. Our data suggest that MCH may be released by neurohypophyseal nerve endings as a typical neurohormone.  相似文献   

19.
Summary Ultrastructures of human and rabbit thrombocytes reveal specific subcellular organelles within these elements. Serotonin granules are demonstrated containing extremely electron opaque material in vesicles with an average diameter of 1,700 Å and a considerable number of large dense bodies (average size 4,000 Å in diameter) is seen. The latter are less electron dense as compared to the serotonin granules. The appearance of serotonin granules in the human thrombocyte is rare, while rabbit platelets show a higher number of these granular vesicles.Acid phosphatase activity in the large dense bodies of human and rabbit platelets has been demonstrated by means of electron microscopy. Present results together with currently available biochemical information are briefly discussed in relation to the lysosomal activity within the thrombocytes.  相似文献   

20.
Summary LH-RH was localized at the ultrastructural level in axons and nerve terminals of the median eminence of the male guinea pig. LH-RH positive neuronal profiles were most concentrated in the medial-dorsal aspect of the infundibular stalk and in the post-infundibular median eminence at the level immediately following separation of the stalk from the base of the brain. LH-RH containing axon profiles were most abundant in the palisade zone; nerve terminals in contact with the hypophysial portal vasculature were relatively rare. The hormone was present within granules that measured 900–1,200 Å in axons of the palisade zone and 400–800 Å in nerve terminals abutting on the portal plexus. The differently sized granules represent heterogeneous populations.Supported in part by U.S. Public Health Service grant HD-09636 from the National Institutes of Health and RR-00167 to the Wisconsin Regional Primate Research Center from the National Institutes of Health. Primate Center Publication No. 15-031The authors wish to thank Dr. Sandy Sorrentino, Jr. for the gift of antiserum to LH-RH and Dr. Ludwig Sternberger for the peroxidase.antiperoxidase complex  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号