首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
Recent Advances in Our Knowledge of the Myxozoa   总被引:20,自引:0,他引:20  
In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in turn this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis. and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the oligochaete. Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan, Tetracapsula bryosalmonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that: 1) the Myxozoa are closely related to Cnidaria (also supported by morphological data); 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan, rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist); and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis, Ceratomyxa shasta, Kudoa spp., and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans, which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.  相似文献   

2.
The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification‐linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known.  相似文献   

3.
Myxozoan parasitism in waterfowl   总被引:2,自引:0,他引:2  
Myxozoans are spore-forming, metazoan parasites common in cold-blooded aquatic vertebrates, especially fishes, with alternate life cycle stages developing in invertebrates. We report nine cases of infection in free-flying native and captive exotic ducks (Anseriformes: Anatidae) from locations across the United States and describe the first myxozoan in birds, Myxidium anatidum n. sp. We found developmental stages and mature spores in the bile ducts of a Pekin duck (domesticated Anas platyrhynchos). Spores are lens-shaped in sutural view, slightly sigmoidal in valvular view, with two polar capsules, and each valve cell has 14-16 longitudinal surface ridges. Spore dimensions are 23.1 microm x 10.8 microm x 11.2 microm. Phylogenetic analysis of the ssrRNA gene revealed closest affinity with Myxidium species described from chelonids (tortoises). Our novel finding broadens the definition of the Myxozoa to include birds as hosts and has implications for understanding myxozoan evolution, and mechanisms of geographical and host range extension. The number of infection records indicates this is not an incidental occurrence, and the detection of such widely dispersed cases suggests more myxozoans in birds will be encountered with increased surveillance of these hosts for pathogens.  相似文献   

4.
A comparative cytomorphological analysis of Myxozoa and parasitic Cnidaria Polypodium hydriforme has been carried out in view of the Weill (1938) hypothesis, which regards Myxozoa as a reduced Cnidaria. The question on the relation of Myxozoa and Cnidaria was arising several times with the application of some new methods during the Myxozoa studies. At present the idea on their phylogenetic relationships has appeared again in connection with an absolutely new understanding of the myxozoan life cycle (Wolf, Markiw, 1984), as well as with the application of molecular-biological methods for their phylogenetic studies. The latter, however, provided some diverse results. So far no comparative cytomorphological analysis of Myxozoa and Polypodium has been carried out. The present paper is to fill the gap on the basis of accumulated facts. According to Weill (1938), the features of similarity of parasitic Cnidaria and Myxozoa are the following: 1) the presence in both of extrusomes (nematocysts and polar capsules) whose structure and development are surprizingly similar; 2) the nuclear dimorphism and somato-generative segregation; 3) the presence of a somatic nutritional cell, surrounding the multiplying generative cells; at present it is known that polyploidy of somatic nuclei and the absence of parasitophorous vacuole are characteristic of trophamnion of Polypodium and trophozoite of Myxozoa; 4) the presence of radial symmetry in both groups; 5) the construction of a diblastic organism made of a cluster of endodermal cells and a few ectodermal cells; 6) the similarity of their cell contacts (Grassé, 1970). At present it is possible to add to Weill's (1938) list of features common for parasitic Cnidaria and Myxozoa the number of important similarities between Polypodium and Myxozoa, some of which being not characteristic of Cnidaria: 1) the "cell in cell" organization of all Polypodium parasitic stages and all Myxozoa life cycle stages; 2) the presence of gametophore supplied with extrusomes; 3) both organisms have haplophase in their life cycles preceded by two-step meiosis; 4) there are mitochondria with tubular cristae in both organisms; 5) the absence of spermatozoa and eggs in both organisms; 6) the similarity of Polypodium cnidocile structure and the cone-like formation situated at the anterior end of polar capsule of actinospore (Lom. Dykova, 1997); 7) the participation of MTOC in the formation of extrusomes in both animals. In spite of the obvious similarity between Myxozoa and parasitic Cnidaria (including Polypodium) it is, however, necessary to take into account differences between them, the main being as follows: the absence in Myxozoa of flagellated stages, centrioles, tissues and organs, true blastophylla, planula-like larvae, gastrulation; the presence of low cell integrations in Myxozoa; Cnidaria and Myxozoa have different types of mitosis, their life cycles and the discharge mechanism of their stinging apparatus being also different. We consider as quite valid a suggestion by Siddall et al. (1995) that parasitic Cnidaria could present an early separated branch of the cnidarian evolution. Further studies of Myxozoa life cycle may show their more definite relation to parasitic Cnidaria. The problem has not yet been solved completely since the available molecular-biological data are rather contradictory and moreover there is no distinct idea as to the Eumetazoa ancestor so far. A further thorough investigation is badly needed in the feelds of developmental cycle, cytomorphology and molecular biology of the variety of narcomedusae and representatives of Myxozoa. This may help to find some transitional forms and stages of the animals and to understand whether we deal with a regressive evolution of parasitic Cnidaria or with a parallel evolution of taxa originated from the common ancestor.  相似文献   

5.
Morris DJ  Adams A 《Parasitology》2008,135(9):1075-1092
Tetracapsuloides bryosalmonae is the myxozoan that causes the commercially and ecologically important proliferative kidney disease of salmonid fish species. Immunohistochemistry and electron microscopy were used to examine the development of this parasite within the kidney of the brown trout Salmo trutta. The main replicative phase of T. bryosalmonae is a cell doublet composed of a primary cell and a single secondary cell. Engulfment of one secondary cell by another to form a secondary-tertiary doublet (S-T doublet) heralded the onset of sporogony whereupon the parasite migrated to the kidney tubule lumen. Within the tubule, the parasite transformed into a pseudoplasmodium and anchored to the tubule epithelial cells via pseudopodial extensions. Within each pseudoplasmodium developed a single spore, composed of 4 valve cells, 2 polar capsules and 1 sporoplasm. The pseudoplasmodia formed clusters suggesting that large numbers of spores develop within the fish. This examination of T. bryosalmonae suggests that the main replicative phase of freshwater myxozoans within vertebrates is via direct replication of cell doublets rather than through the rupturing of extrasporogonic stages, while tertiary cell formation relates only to sporogony. Taken in conjunction with existing phylogenetic data, 5 distinct sporogonial sequences are identified for the Myxozoa.  相似文献   

6.
The phylum Myxozoa is composed of endoparasitic species that have predominately been recorded within aquatic vertebrates. The simple body form of a trophic cell containing other cells within it, as observed within these hosts, has provided few clues to relationships with other organisms. In addition, the placement of the group using molecular phylogenies has proved very difficult, although the majority of analyses now suggest that they are cnidarians. There have been relatively few studies of myxozoan stages within invertebrate hosts, even though these exhibit multicellular and sexual stages that may provide clues to myxozoan evolution. Therefore an ultrastructural examination of a myxozoan infection of a freshwater oligochaete was conducted, to reassess and formulate a model for myxozoan development in these hosts. This deemed that meiosis occurs within the oligochaete, but that fertilisation is not immediate. Rather, the resultant haploid germ cell (oocyte) is engulfed by a diploid sporogonic cell (nurse cell) to form a sporoplasm. It is this sporoplasm that infects the fish, resulting in the multicellular stages observed. Fertilisation occurs after the parasites leave the fish and enter the oligochaete host. The nurse cell/oocyte model explains previously conflicting evidence in the literature regarding myxosporean biology, and aligns phenomena considered distinctive to the Myxozoa, such as endogenous budding and cell within cell development, with processes recorded in cnidarians. Finally, the evolutionary origin of the Myxozoa as cnidarian parasites of ova is hypothesised.  相似文献   

7.
Fish mariculture has dramatically expanded in recent years in Mediterranean countries. In this scenario, several pathological problems have logically arisen and parasitological etiologies are increasingly being reported, either as primary or secondary pathogens. Myxozoa is the most diverse and economically important group of fish parasites, and several species are known to cause or contribute to losses in mariculture. Species of the genus Enteromyxum currently constitute the most serious parasitological threat. Some unusual biological characters, such as wide host spectrum and direct fish-to-fish transmission, together with high virulence for some host species, combine a dangerous cocktail which is emerging in recent years. Closed-system (recirculation) and heated-water locations are especially sensitive to chronic infections by these parasites, which can cause serious mortality and even discourage culture of some fish species at certain locations (i.e, Diplodus puntazzo). The presentation presents an overview of recent advances in research of marine myxozoans, focusing mainly in the most pathogenic, Enteromyxum spp. The incidence of these and other emerging infections, and the design of potential strategies for control will be introduced.  相似文献   

8.
In free-living cnidarians, minicollagens are major structural components in the biogenesis of nematocysts. Recent sequence mining and proteomic analysis demonstrate that minicollagens are also expressed by myxozoans, a group of evolutionarily ancient cnidarian endoparasites. Nonetheless, the presence and abundance of nematocyst-associated genes/proteins in nematocyst morphogenesis have never been studied in Myxozoa. Here, we report the gene expression profiles of three myxozoan minicollagens, ncol-1, ncol-3, and the recently identified noncanonical ncol-5, during the intrapiscine development of Myxidium lieberkuehni, the myxozoan parasite of the northern pike, Esox lucius. Moreover, we localized the myxozoan-specific minicollagen Ncol-5 in the developing myxosporean stages by Western blotting, immunofluorescence, and immunogold electron microscopy. We found that expression of minicollagens was spatiotemporally restricted to developing nematocysts within the myxospores during sporogenesis. Intriguingly, Ncol-5 is localized in the walls of nematocysts and predominantly in nematocyst tubules. Overall, we demonstrate that despite being significantly reduced in morphology, myxozoans retain structural components associated with nematocyst development in free-living cnidarians. Furthermore, our findings have practical implications for future functional and comparative studies as minicollagens are useful markers of the developmental phase of myxozoan parasites.  相似文献   

9.
The phylum Myxozoa contains over 1350 species almost all of which are considered to be obligate parasites of aquatic animals. The phylum is composed of two classes, the Myxosporea and the Malacosporea, species of which are important pathogens responsible for severe economic losses in cultured fisheries. The life cycles of freshwater Myxozoa are believed to involve horizontal, indirect transmission, involving an invertebrate (oligochaetes or bryozoans) and a vertebrate host (fish or amphibians). Here, we describe myxozoan propagation through the fragmentation of invertebrate hosts to form new infected individuals. The two hosts examined are an oligochaete Lumbriculus variegatus infected with an unidentified myxosporean (Triactinomyxon sp.) and the bryozoan Fredericella sultana infected with the malacosporean Tetracapsuloides bryosalmonae which causes proliferative kidney disease, a major constraint of the European rainbow trout industry. Such intra-clonal propagation is a novel form of vertical transmission that is likely to be widespread within the Myxozoa and could form an important method by which some of these parasites maintain and proliferate within the aquatic environment.  相似文献   

10.
The phylogenetic relationships of 15 myxozoan taxa with known alternating life-cycles were investigated in order to provide insight into the puzzling matches between myxosporeans and actinosporeans of the myxozoan life-cycle data. Phylogenetic analyses were performed using two partitioned data-sets of life-cycle stages, myxosporean stage from fish hosts versus actinosporean stage from annelid hosts, and a combined data-set of myxosporean and actinosporean stages. A cnidarian parasite of fish, Polypodium hydriforme Ussov, 1885, was used as the outgroup. The supraspecific level grouping in the conventional classification of actinosporeans was not supported in the analysis of the partitioned data from the actinosporean phase, which yielded two equally parsimonious trees. Analysis of the partitioned data from the myxosporean phase provided 24 equally parsimonious trees and did not support the current classification of myxosporeans. The analyses of the partitioned data of myxozoans by life-cycle stage revealed a lack of taxonomic congruence between the two life-stage partitions. Two equally parsimonious trees were obtained from analysis of the combined data. The suborder Variisporina of the Myxozoa was not supported by the total evidence trees, while the monophyly of the species of Myxobolus Butschli, 1882 and of the Myxidiidae were supported. The cladograms from the combined data revealed that these myxozoan species formed four major monophyletic groups. Among them, two were supported by the partitioned data of the actinosporean phase. The phylogenetic signals and the better resolution reflected by the trees of combined data suggest that the phylogenetic total evidence approach should be employed in future studies of the systematics of myxozoans.  相似文献   

11.
Two new species of Myxozoa from the brain of the green knife fish Eigemannia virescens are described: Myxobolus inaequus sp. n. has an unusually large spore body and extremely unequal polar capsules, and Henneguya theca sp. n. has an attenuated spore encased in a sheath not previously described in other Myxozoa . Only spores of the two species were observed, and infections caused no obvious pathological changes in the brain.  相似文献   

12.
The small subunit-rRNA genes of 18 myxozoans from Lake Sasajewun, Algonquin Park were amplified and digested with restriction endonucleases for riboprinting analysis. Identical riboprints were not found between the myxosporeans and the actinosporeans. The distinct riboprinting patterns observed among these myxozoans indicate considerable genetic diversity within this group. Identical riboprints were found between Myxobolus pendula and Myxobolus pellicides, and between triactinomyxon 'C' and Triactinomyxon ignotum. Parsimony analysis of the riboprints demonstrated that neither the myxosporeans nor the actinosporeans formed a monophyletic group. Some species of Myxobolus are more closely related to forms of triactinomyxon, echinactinomyxon or raabeia than to other Myxobolus species. These results are consistent with the two-host life cycle hypothesis of myxozoans that myxosporeans and actinosporeans are alternating stages of the same organisms.  相似文献   

13.
Two new species of Myxozoa from the brain of the green knife fish Eigemannia virescens are described: Myxobolus inaequus sp. n. has an unusually large spore body and extremely unequal polar capsules, and Henneguya theca sp. n. has an attenuated spore encased in a sheath not previously described in other Myxozoa. Only spores of the two species were observed, and infections caused no obvious pathological changes in the brain.  相似文献   

14.
15.
Members of the phylum Myxozoa are obligate parasites, primarily of aquatic organisms. Their phylogeny has remained problematic, with studies placing them within either the Bilateria or Cnidaria. The discovery that the enigmatic Buddenbrockia plumatellae is a myxozoan that possesses distinct bilaterian features appeared to have finally resolved the debate. B. plumatellae is described as a triploblastic 'worm-like' organism, within which typical myxozoan malacospores form. Using EM we examined the early development of the B. plumatellae 'worms' within the bryozoan host Plumatella repens. The initial development involved numerous unicellular, amoeboid pre-saccular stages that were present within the basal lamina of the host's body wall. These stages migrate immediately beneath the peritoneum where a significant host tissue reaction occurs. The stages aggregate, initiating the formation of a 'worm'. The base of a developing 'worm' forms a pseudosyncytium which resolves into an ectoderm surrounding a mesendoderm. The pseudosyncytium is directly anchored into neighbouring host cells via masses of striated fibres. The replication of the ectodermal and mesendodermal cells extends the developing 'worm' into the coelom of the host. The mesendoderm resolves to form a mesoderm and an endoderm. Myogenesis appears to be initiated from the anchored end of the 'worm' and develops along the mesoderm. The aggregation and differentiation of amoeboid pre-saccular stages to initiate the 'worm' draws analogies to the sacculogenesis observed for Tetracapsuloides bryosalmonae, B. plumatellae's sister taxon within the class Malacosporea. The development of a multicellular, spore forming organism, from single cells does not correlate to any bilaterian or cnidarian species. Current phylogenies indicate the Myxozoa are basal bilaterians along with the Acoela and Mesozoa. Comparison with these other basal groups may help to resolve the placement of Myxozoa within the tree of life.  相似文献   

16.
The current phase of molecular phylogenetics can be named the 18S rRNA gene era, which is now approaching the end. To date, almost all phyla of metazoans and many taxa of protists are represented in databases of 18S rRNA gene sequences. The elements of the phylogenetic tree of Metazoa inferred from 18S rRNA genes are characterized by unequal validity: some of them seem to be well grounded; others are not adequately supported, and probably will be revised later. The validity of phylogenetic reconstruction is influenced by two main factors: (1) erroneous grouping of long branches that occur because of abnormally high evolution rate; (2) deficit of phylogenetically informative characters. A method for overcoming these difficulties is suggested in addition to known tools: using phylogenetic markers that are stable within individual taxa and evolve by punctuated equilibrium. These markers are least influenced by the convergence caused by a high evolution rate of the entire gene. The nature of these markers of ancient taxa, paradoxical from the perspective of neutral evolution, is discussed, as well as their importance for establishing monophyly of both new large-scale taxonomic groups of invertebrates (Bilateria + Rhombozoa + Orthonectida + Myxozoa + Cnidaria + Placozoa and Echinodermata + Hemichordata) and some major taxa of Nematoda.  相似文献   

17.
Petrov NB  Aleshin VV 《Genetika》2002,38(8):1043-1062
The current phase of molecular phylogenetics can be named the 18S rRNA gene era, which is now approaching the end. To date, almost all phyla of metazoans and many taxa of protists are represented in databases of 18S rRNA gene sequences. The elements of the phylogenetic tree of Metazoa inferred from 18S rRNA genes are characterized by unequal validity: some of them seem to be well grounded; others are not adequately supported, and probably will be revised later. The validity of phylogenetic reconstruction is influenced by two main factors: (1) erroneous grouping of long branches that occur because of abnormally high evolution rate; (2) deficit of phylogenetically informative characters. A method for overcoming these difficulties is suggested in addition to known tools: using phylogenetic markers that are stable within individual taxa and evolve by punctuated equilibrium. These markers are least influenced by the convergence caused by a high evolution rate of the entire gene. The nature of these markers of ancient taxa, paradoxical from the perspective of neutral evolution, is discussed, as well as their importance for establishing monophyly of both new large-scale taxonomic groups of invertebrates (Bilateria + Rhombozoa + Orthonectida + Myxozoa + Cnidaria + Placozoa and Echinodermata + Hemichordata) and some major taxa of Nematoda.  相似文献   

18.
Raĭkova EV 《Tsitologiia》2005,47(10):933-939
The present review analyses cytomorphological characters of the parasitic cnidarian Polypodium hydriforme, discriminating between those of bilateral (triploblastic) animals, common characters shared with the Myxozoa, and the unique characters of this species. Phylogenetic position of the group of parasitic cnidarians and of the class Polypodiozoa is discussed. A conclusion is made that the cytomorphological characters as well as 18S rDNA analysis of P. hydriforme and Myxozoa justify establishment of a new taxonomic group (a clade) of parasitic cnidarians (Endocnidozoa) uniting Polypodiozoa and Myxozoa (Zrzavy, Hypsa, 2003). The unique characters of P. hydriforme suggest that the phylum Cnidaria is more diverse than commonly supposed, and that P. hydriforme is not an aberrant cnidarian species but a relic organism, which might originally belong to the cnidarian class Polypodiozoa, which underwent reduction in the course of adaptation to parasitism.  相似文献   

19.
The myxozoans Gadimyxa atlantica n. sp. and G. sphaerica n. sp., and G. arctica n. sp. (Myxozoa, Parvicapsulidae), are described from Gadus morhua L. and Arctogadus glacialis (Peters) (Gadidae), respectively. They develop coelozoic in bisporic plasmodia in the urinary systems. Two morphological forms of spores were found in all 3 species, i.e., wide and (sub)spherical forms. Both spore types are bilaterally symmetrical along the suture line. The wide spores, semicircular in frontal view and elliptical in apical view, have 2 spherical polar capsules, which open in the sutural or median plane mid on the flat side of the spore. Mean widths of the wide spores of G. atlantica, G. sphaerica, and G. arctica are 7.5, 10.0, and 10.0 microm, respectively. The older, more thick-walled, (sub)spherical spores with binucleate sporoplasm are 8.0, 5.3, and 7.3 microm in mean width, respectively. The mean diameters of the polar capsules of (sub)spherical spores are 2.4, 1.7, and 2.2 microm, respectively. The (sub)spherical forms of Gadimyxa are most similar to Ortholinea within the Ortholineidae, but they differ in the development of the spores and in the arrangement of the polar capsules. The polychaetes Spirorbis spp. (Spirorbidae) act as invertebrate hosts of G. atlantica. The previously described actinospores of the tetractinomyxon type develop to myxospores in Gadus morhua within 8 wk. This is the second known myxozoan 2-host life cycle in the marine environment. Phylogenetic analyses based on partial small subunit rDNA sequences places Gadimyxa spp. among Parvicapsula spp. in the Parvicapsulidae.  相似文献   

20.
Molecular data permit to construct phylogenetic trees independently of morphological characters. It allows to consider their evolution without the frames of a priori hypothesis of regularities of morphological evolution and independently of palaeontological data. Cladistic analysis of elements of secondary structure of varible areas V7 and V2 in 18S rRNA with different Protozoa as "external" groups shows that Bilateria + Cnidaria are monophyletic, Ctenophora and Porifera are early derivatives of Metazoa, Trichoplax (Placozoa) is a form related to Cnidaria, while Rhombozoa, Orthonectida and Myxozoa were branched within Bilateria. Morphological reduction with losses of any organs and tissues took place many times in early evolution of Metazoa and Bilateria not only in parasitic species. It occurred both at early and late stages of embryonic development and differentiation. Two alternative scenario of morphological degeneration in Trichoplax and the way of their testing are suggested. The similarity of Ctenophora and Calcarea is discussed. Meridional or oblique position of the third cleavage furrow of ovule can be considered as an evidence of their origin from common ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号