首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to study the regulatory mechanism of developmental and tissue-specific expression of the muscle type dystrophin gene in mice, transgenic mice were generated carrying the 900 bp genomic fragment derived from the muscle type dystrophin promoter region fused to the bacterial lacZ gene. Six independent transgenic mouse lines showed specific reporter gene expression in the right heart, but not in skeletal or smooth muscle. The reporter gene expression was first detected in the presumptive right ventricle of the embryos at 8.5 days post coitum, and the expression continued only in the right ventricle throughout the development and at the adult stage. The results indicate that the 900 bp genomic fragment contains the regulatory element required for expression of dystrophin only in the right heart, suggesting that distinct elements are responsible for the expression in the left and right compartments of the heart, and/or in skeletal and smooth muscle cells. Based on these findings, the relationship between defects in muscle type promoter and the diseases caused by abnormal dystrophin expression is discussed.  相似文献   

2.

Background  

Uromodulin is the most abundant protein found in the urine of mammals. In an effort to utilize the uromodulin promoter in order to target recombinant proteins in the urine of transgenic animals we have cloned a goat uromodulin gene promoter fragment (GUM promoter) and used it to drive expression of GFP in the kidney of transgenic mice.  相似文献   

3.
Gastric pit cells are high‐turnover epithelial cells of the gastric mucosa. They secrete mucus to protect the gastric epithelium from acid and pepsin. To investigate the genetic mechanisms underlying the physiological functions of gastric pit cells, we generated a transgenic mouse line, namely, Capn8‐Cre, in which the expression of Cre recombinase was controlled by the promoter of the intracellular Ca2+‐regulated cysteine protease calpain‐8. To test the tissue distribution and excision activity of Cre recombinase, the Capn8‐Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4Co/Co). Multiple‐tissue PCR and LacZ staining demonstrated that Capn8‐Cre transgenic mouse expressed Cre recombinase in the gastric pit cells. Cre recombinase activity was also detected in the liver and skin tissues. These data suggest that the Capn8‐Cre mouse line described here could be used to dissect gene function in gastric pit cells. genesis 47:674–679, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Hachtel  Wolfgang  Strater  Tim 《Plant and Soil》2000,221(1):33-38
A 1535 bp promoter of the nitrate reductase gene (nia) from birch (Betula pendula) and a series of 5′ deletions were fused to the β-glucuronidase (GUS) gene and introduced into Nicotiana plumbaginifolia. In transgenic plants the NR promoter sequences directed strong GUS expression in the root epidermal hair cells, and in phloem cells of leaf and stem vascular tissue. The NR promoter confers also a significant stimulation of the GUS gene expression by nitrate. These findings might indicate that nitrate flow is one of the signals involved into tissue and cell specific expression of the NR promoter GUS fusions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
6.
Brain microvascular endothelial cells (ECs) have unique characteristics distinguished from peripheral ECs and play important roles in blood-brain barrier (BBB). To investigate the physiological control of the brain ECs, we generated a transgenic mouse line in which the expression of Cre recombinase was driven by the promoter of the mouse surfactant protein A (SP-A) gene. The Cre activity was detected in blood vessels of brain, alveolar type II cells of lung and epithelium of gland stomach. In brain ECs, the Cre activity started at embryonic day 11.5, indicating that the subpopulation of ECs in brain could be molecularly defined at early embryonic stages. The use of SP-A-Cre mice should facilitate analysis of gene function in the brain ECs.  相似文献   

7.
Zhao Z  Hou N  Sun Y  Teng Y  Yang X 《遗传学报》2010,37(9):647-652
Parietal cells are one of the largest epithelium cells of the mucous membrane of the stomach that secrete hydrochloric acid.To study the function of gastric parietal cells during gastric epithelium homeostasis,we generated a transgenie mouse line,namely,Atp4b-Cre,in which the expression of Cre recombinase was controlled by a 1.0 kb promoter of mouse β-subunit of H+-,K+-ATPase gene(Atp4b).In order to test the tissue distribution and excision activity of Cre recombinase in vivo,the Atp4b-Cre transgenic mice were bred with the reporter strain ROSA26 and a mouse strain that carries Smad4 conditional alleles(Smad4Co/Co).Multiple-tissue PCR of Atp4b-Cre;Smad4Co/+mice revealed that the recombination only happened in the stomach.As indicated by LacZ staining,ROSA26;Atp4b-Cre double transgenic mice showed efficient expression of Cre recombinase within the gastric parietal cells.These results showed that this Atp4b-Cre mouse line could be used as a powerful tool to achieve conditional gene knockout in gastric parietal cells.  相似文献   

8.
9.
10.
11.
12.
Dopamine beta-hydroxylase (DBH) catalyzes the final step in the biosynthesis of norepinephrine, the principal classic neurotransmitter of peripheral sympathetic neurons. We have shown that 5.8 kb of 5' upstream region from a cloned human DBH gene promoter is sufficient to direct expression of the E. coli lacZ gene in transgenic mice to neurons of the locus ceruleus and other classic noradrenergic brain stem nuclei, sympathetic ganglion neurons, and adrenal chromaffin cells. lacZ expression was also observed in neurons of the enteric system, the retina, some sensory and all cranial parasympathetic ganglia, and some diencephalic and telencephalic brain nuclei. The expression pattern of the transgene in DBH-immunonegative sites overlapped with many sites where expression of tyrosine hydroxylase or phenylethanolamine N-methyltransferase, two other catecholamine biosynthetic enzymes, has been reported.  相似文献   

13.
14.
15.
Although a few promoters that direct intestinal epithelial cell-specific expression in transgenic animals have been reported, they are not necessarily appropriate for transgenic studies in terms of activity and tissue specificity. Here, we examined the tissue specificity of transgene expression directed by the 2.8-kb promoter region of the T3(b) gene, which encodes one of the non-classical major histocompatibility complex class I molecules. The transgene was expressed exclusively in the epithelial cells of the small and large intestines at high levels. The results indicate that the T3(b) promoter is useful for directing transgene expression specifically in intestinal epithelial cells.  相似文献   

16.
《The Journal of cell biology》1995,129(5):1421-1432
The genes coding for the two type I collagen chains, which are active selectively in osteoblasts, odontoblasts, fibroblasts, and some mesenchymal cells, constitute good models for studying the mechanisms responsible for the cell-specific activity of genes which are expressed in a small number of discrete cell types. To test whether separate genetic elements could direct the activity of the mouse pro-alpha 1(I) collagen gene to different cell types in which it is expressed, transgenic mice were generated harboring various fragments of the proximal promoter of this gene cloned upstream of the Escherichia coli beta-galactosidase gene. During embryonic development, X-gal staining allows for the precise identification of the different cell types in which the beta-galactosidase gene is active. Transgenic mice harboring 900 bp of the pro-alpha 1(I) proximal promoter expressed the transgene at relatively low levels almost exclusively in skin. In mice containing 2.3 kb of this proximal promoter, the transgene was also expressed at high levels in osteoblasts and odontoblasts, but not in other type I collagen-producing cells. Transgenic mice harboring 3.2 kb of the proximal promoter showed an additional high level expression of the transgene in tendon and fascia fibroblasts. The pattern of expression of the lacZ transgene directed by the 0.9- and 2.3-kb pro-alpha 1(I) proximal promoters was confirmed by using the firefly luciferase gene as a reporter gene. The pattern of expression of this transgene, which can be detected even when it is active at very low levels, paralleled that of the beta-galactosidase gene. These data strongly suggest a modular arrangement of separate cell-specific cis-acting elements that can activate the mouse pro-alpha(I) collagen gene in different type I collagen-producing cells. At least three different types of cell- specific elements would be located in the first 3.2 kb of the promoter: (a) an element that confers low level expression in dermal fibroblasts; (b) a second that mediates high level expression in osteoblasts and odontoblasts; and (c) one responsible for high level expression in tendon and fascia fibroblasts. Our data also imply that other cis- acting cell-specific elements which direct activity of the gene to still other type I collagen-producing cells remain to be identified.  相似文献   

17.
Transgenic mice were produced by microinjection of a human serum amyloid P component (hSAP) gene or a fusion gene (SS) comprising the promoter for hSAP (nucleotides -600 to -14 from the start codon) and the coding region of the hepatitis B virus surface antigen (HBsAg). In adult mice, both transgenes were expressed only in the liver, and thus the pattern of expression resembled that of the endogenous mouse SAP gene. Both hSAP mRNA and HBsAg were first detected in liver on the second postnatal day. The level of these products increased rapidly and reached the maximum within the first week. These results suggest that the hSAP gene contains a short, cis-acting, developmental, and liver-specific regulatory sequence at the 5' or the 3' end and that this sequence can target expression of the foreign gene.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号