首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The role of membrane phospholipids in enkephalin receptor-mediated inhibition of adenylate cyclase (EC 4.6.1.1) activity in neuroblastoma X glioma NG108-15 hybrids was studied by selective hydrolysis of lipids with phospholipases. When NG108-15 cells were treated with phospholipase C from Clostridium welchii at 37 degrees C, an enzyme concentration--dependent decrease in adenylate cyclase activity was observed. The basal and prostaglandin E1 (PGE1)-stimulated adenylate cyclase activities were more sensitive to phospholipase C (EC 3.1.4.3) treatment than were the NaF-5'-guanylylimidodiphosphate (Gpp(NH)p)-sensitive adenylate cyclase activities. Further, Leu5-enkephalin inhibition of basal or PGE1-stimulated adenylate cyclase activity was attenuated by phospholipase C treatment, characterized by a decrease of enkephalin potency and of maximal inhibitory level. [3H]D-Ala2-Met5-enkephalinamide binding revealed a decrease in receptor affinity with no measurable reduction in number of binding sites after phospholipase C treatment. Although opiate receptor was still under the regulation of guanine nucleotide after phospholipase C treatment, adenylate cyclase activity was more sensitive to the stimulation of Gpp(NH)p. Thus, the reduction of opiate agonist affinity was not due to the uncoupling of opiate receptor from N-component. Further, treatment of NG108-15 hybrid cell membrane with phospholipase C at 24 degrees C produced analogous attenuation of enkephalin potency and efficacy without alteration in receptor binding. The reduction in enkephalin potency could be reversed by treating NG108-15 membrane with phosphatidylcholine, but not with phosphatidylserine, phosphatidylinositol, or cerebroside sulfate. The enkephalin activity in NG108-15 cells was not altered by treating the cells with phospholipase A2 o phospholipase C from Bacillus cereus. Hence, apparently, there was a specific lipid dependency in enkephalin inhibition of adenylate cyclase activity.  相似文献   

2.
Chronic treatment of neuroblastoma X glioma NG108-15 hybrid cells with opiate agonist resulted in loss of the acute opiate inhibition of adenylate cyclase activity with a concomitant increase in the enzymatic activity observable on addition of the antagonist naloxone. The role of membrane lipids in the cellular expression of these chronic opiate effects was investigated by the hydrolysis of phospholipids with various lipases. Treatment with phospholipase C from Clostridium welchii produced an enzyme concentration-dependent decrease of prostaglandin E1-stimulated adenylate cyclase activity in control or etorphine-treated (1 microM for 4 h) hybrid cells. In addition, incubation of hybrid cells with phospholipase C concentrations of greater than or equal to 0.5 U/ml completely abolished the compensatory increase in adenylate cyclase activity after chronic opiate treatment. This attenuation of the increase in adenylate cyclase activity by phospholipase C could be prevented by inclusion of phosphatidylcholine but not of phosphatidic acid during the enzymatic incubations. The specificity of the phospholipids involved in expression of the chronic opiate effect could be demonstrated further by the absence of effect exhibited by phospholipase C from Bacillus cereus and phospholipase D. Hydrolysis of the acyl side chains of phospholipids with phospholipase A2 did not alter the chronic opiate effect after removal of lysophosphatides with bovine serum albumin. Because the guanylylimidodiphosphate- and NaF-sensitive adenylate cyclase activities were not affected by these phospholipase treatments, the expression of the compensatory increase in adenylate cyclase activity is mediated via an increase in the coupling between hormonal receptor and adenylate cyclase with the participation of the polar head groups of the phospholipids and not the hydrophobic side chains.  相似文献   

3.
Three GTP-binding proteins of 50 kDa, 45 kDa and 28 kDa were identified by photoaffinity labelling with [gamma-32P]GTP-gamma-azidoanilide (A-GTP) in the rat liver plasma membrane. Pertussis toxin catalysed ADP-ribosylation of a single protein of 40 kDa. A-GTP had no effect on the basal labeling by pertussis toxin. After u.v. irradiation of the membrane in the presence of A-GTP, the GTP-dependent ADP-ribosylation by cholera toxin was increased, while the basal labelling was not affected. These results suggest that A-GTP interacts specifically with the activatory GTP-binding protein (Gs) and does not interact with the inhibitory GTP-binding protein (Gi). The effects of partial photoinactivation of Gs of the rat liver plasma membrane adenylate cyclase system by A-GTP were studied. U.v. irradiation in the presence of increasing concentrations of the analogue caused progressive decrease in the maximal extent of activation by guanosine 5'-[gamma-thio]triphosphate, but the Ka was not affected. The rate of activation of liver adenylate cyclase by guanosine 5'-[gamma-thio]triphosphate is temperature-dependent. The lag time increased from 0.5 min at 30 degrees C to 2.0-2.5 min at 15 degrees C in the presence of 10 microM-guanosine 5'-[gamma-thio]triphosphate. However, Ka remains unaffected by lowering the temperature. Photoinactivation by A-GTP or competitive inhibition by guanosine 5'-[beta-thio]diphosphate decreases the maximal extent of activation by guanosine 5'-[gamma-thio] triphosphate, but the lag time remains unaffected. The present results support the idea that Gs is tightly associated with the catalytic subunit under basal conditions. The present results also indicate that the transition of an inactive Gs to its active form is the rate-limiting step of the activation of adenylate cyclase by guanosine 5'-[gamma-thio]triphosphate in the intact rat liver plasma membranes.  相似文献   

4.
Brief treatment of rat liver plasma membranes with phospholipase C of Clostridium welchii increased both the ratio of saturated to unsaturated fatty acids and the ratio of cholesterol to phospholipids. Using 5-doxylstearic acid spin probes two breaks at 29 and 19.6 °C could be observed in the order parameter, SA, vs temperature curve for untreated membranes. Upon phospholipase C digestion the lower phase transition temperature was shifted to 23 °C, while the higher phase transition temperature could not be detected up to 40 °C. The order parameter, SA, was consistently higher at all temperatures in the phospholipase C-treated membranes. As phospholipase C is known to attack the outer lamella, these results can be interpreted as indicating an increase in ordering (i.e., decrease in fluidity) of the outer membrane lamella. On the other hand, an increase in basal activity of adenylate cyclase of the treated membranes was observed with an apparent reduction of the activation energies both below and above the break (at 20 °C) in the Arrhenius plot of enzyme activity. Phospholipase C treatment did not affect the temperature of the break in Arrhenius kinetics of the enzyme. The results are discussed in terms of the role of the ordering state of membrane lipids in adenylate cyclase activity.  相似文献   

5.
Treatment of striatal washed particles with phospholipase A(2) or C abolished the activation of adenylate cyclase by dopamine but not by N(16)-phenylisopropyl adenosine (PIA). The inhibition of dopamine-sensitive cyclase was dependent on Ca2+ and increased with time and phospholipase concentration. F(-)-sensitive cyclase was not affected by phospholipase A(2) treatment, but was enhanced by phospholipase C treatment. Phospholipase D did not affect basal, PIA, dopamine, or F(-)-sensitive cyclase activities. The observed effects of phospholipase A(2) were not due to either the detergent effect of lysophospholipids or to contaminating proteases. Dopamine-sensitive cyclase, inactivated by pretreatment with phospholipase A(2), was restored by asolectin (a soybean mixed phospholipid), phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine, but not by phosphatidylinositol. Phosphatidylserine and phosphatidylcholine were equipotent in restoring dopamine-sensitive activity. Lubrol-PX, a nonionic detergent, abolished completely the dopamine-sensitive cyclase activity, whereas PIA-sensitive activity was slightly inhibited. In contrast, digitonin inhibited dopamine- and PIA-sensitive cyclase activity in a parallel fashion. Lubrol-PX released some adenylate cyclase into a 16,000 x g supernatant fraction that was stimulated by PIA but not by dopamine. Removal of most of the free detergent by Bio-bead SM 2 enhanced stimulation by PIA but did not restore sensitive cyclase. The data suggest that the requirement for phospholipids for the coupling of dopamine and adenosine receptors to the striatal adenylate cyclase may be different and that the adenosine receptors may be more tightly coupled to the enzyme than are dopamine receptors.  相似文献   

6.
Rat liver plasma membranes were incubated with phospholipase A2 (purified from snake venom) or with filipin, a polyene antibiotic, followed by analysis of the binding of glucagon to receptors, effects of GTP on the glucagon-receptor complex, and the activity and responses of adenylate cyclase to glucagon + GTP, GTP, Gpp(NH)p, and F-. Phospholipase A2 treatment resulted in concomitant lossess of glucagon binding and of activation of cyclase by glucagon + GTP. Greater than 85% of maximal hydrolysis of membrane phospholipids was required before significant effects of phospholipase A2 on receptor binding and activity response to glucagon were observed. The stimulatory effects of Gpp(NH)p or F- remained essentially unaffected even at maximal hydrolysis of phospholipids, whereas the stimulatory effect of GTP was reduced. Detailed analysis of receptor binding indicates that phospholipase A2 treatment affected the affinity but not the number of glucagon receptors. The receptors remain sensitive to the effects of GTP on hormone binding. Filipin also caused marked reduction in activation by glucagon + GTP. However, in contrast to phospholipase A2 treatment, the binding of glucagon to receptors was unaffected. The effect of GTP on the binding process was also not affected. The most sensitive parameter of activity altered by filipin was stimulation by GTP or Gpp(NH)p; basal and fluoride-stimulated activities were least affected. It is concluded from these findings that phospholipase A2 and filipin, as was previously shown with phospholipase C, are valuable tools for differentially affecting the components involved in hormone, guanyl nucleotide, and fluoride action on hepatic adenylate cyclase.  相似文献   

7.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

8.
[14,15-3H] Dihydroforskolin has been used as a tracer in the study of forskolin binding to adipocyte plasma membrane and the subsequent activation of adenylate cyclase (EC 4.6.1.1) of this membrane. The specific binding of radioactivity to the membrane was rapid, temperature-dependent, saturable, and readily reversible. The equilibrium dissociation reaction constant (KD) for the binding was 13 microM, with a maximum binding (Bmax) of 61 pmol of forskolin per mg of membrane protein. The Hill coefficient was 1.0. The bound [14,15-3H] dihydroforskolin was displaced by forskolin with rate constants of 0.07 X 10(6) M-1 min-1 and 1.2 min-1 for the association and dissociation reactions, respectively (30 degrees C). The equilibrium dissociation constant (KD) was approximately the same as the concentration that produced half-maximum activation (EC50) of the adenylate cyclase of rat adipocyte plasma membrane. There was a linear correlation between forskolin binding and adenylate cyclase activation. The results are consistent with the concept of a single class of binding site which binds forskolin. [14,15-3H] Dihydroforskolin appears to be a potentially useful tracer in the study of the mechanism of activation of the catalytic unit of adipocyte adenylate cyclase.  相似文献   

9.
Treatment of bovine thyroid plasma membranes with phospholipase A or C inhibited the stimulation of adenylate cyclase activity by thyroid-stimulating hormone (TSH). In general, basal and NaF-stimulated adenylate cyclase activity was not influenced by such treatment. When plasma membranes were incubated with 1–2 units/ml phospholipase A, subsequent addition of phosphatidylcholine or phosphatidylserine but not phosphatidylethanolamine partially restored TSH stimulation. Phosphatidylcholine was more effective than phosphatidylserine in that it caused greater restoration of the TSH response and smaller amounts of phosphatidylcholine were active. However, when the TSH effect was obliterated by treatment of plasma membranes with 10 units/ml phospholipase A, phospholipids were unable to restore any response to TSH. Lubrol PX, a nonionic detergent, inhibited basal, TSH- and NaF-stimulated adenylate cyclase activities in thyroid plasma membranes. Although phosphatidylcholine partially restored TSH stimulation of adenylate cyclase activity in the presence of Lubrol PX, it did not have a similar effect on the stimulation induced by NaF. These results indicate that phospholipids are probably essential components in the system by which TSH stimulates adenylate cyclase activity in thyroid plasma membranes. The effects do not seem to involve the catalytic activity of adenylate cyclase but the data do not permit a distinction between decreased binding of TSH to its receptor or impairment of the signal from the bound hormone to the enzyme activity.  相似文献   

10.
Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new 'break' occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.  相似文献   

11.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The effects of epinephrine and NaF on the membrane preparations of adenylate cyclase from rabbit heart were studied. After preincubation with epinephrine or NaF at 37 degrees C and subsequent washing of the membranes at 4 degrees C from the effectors, adenylate cyclase passes into the activated state and loses its sensitivity to epinephrine and NaF. The effect may be "reversed" by preincubation of the membranes at 37 degrees C. The addition of ATP to the preincubation media does not affect the regulatory and catalytic properties of the enzyme. It is assumed that adenylate cyclase regulation by hormones and fluoride ions may occur without hypothetical processes of phosphorylation and dephosphorylation of the enzyme. The effect of preincubation is probably due to the temperature-dependent association and dissociation of the enzyme-receptor complex in the membrane. Epinephrine and NaF partially protect the cyclase against trypsin-induced inactivation, which is indicative of structural or conformational changes of the adenylate cyclase complex during its interaction with activators.  相似文献   

13.
The lipid composition of bovine thyroid plasma membranes was modified using the nonspecific lipid transfer protein from bovine liver. Incubation of plasma membranes with transfer protein and phosphatidylinositol-containing liposomes caused a strong, concentration dependent, inhibition of TSH-stimulated adenylate cyclase activity. Other phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidic acid were two to four times less effective as inhibitors of TSH-stimulation. The phosphatidylinositol-induced inhibition was not reversed when more than 80% of phosphatidylinositol incorporated was removed using phosphatidylinositol-specific phospholipase C. Incorporation of phosphatidylinositol in plasma membranes provoked no significant change in the fluorescence anisotropies of the fluorophores 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(14-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), indicating that the inhibition was not due to changes in membrane fluidity. At phosphatidylinositol concentrations causing a 66% reduction in TSH-stimulated adenylate cyclase activity cholera toxin- and forskolin-stimulated activity as well as basal activity were decreased by maximally 10%. Since TSH binding to bovine thyroid plasma membranes was not affected it is suggested that phosphatidylinositol can act as a negative modulator of the TSH activation of adenylate cyclase and this probably by interfering with the coupling between the occupied TSH receptor and the stimulatory GTP-binding regulatory protein of the adenylate cyclase complex.  相似文献   

14.
The effects of angiotensin II (A II) on adenylate cyclase activities in membranes of the zona glomerulosa (the capsular fraction) and the zona fasciculata (the decapsulated fraction) from rat adrenocortical glands were investigated. A time- and GTP-dependent stimulation by A II of adenylate cyclase activity was observed in the capsular fraction but not in the decapsulated fraction. The activation of adenylate cyclase by ACTH and A II was additive. Stimulation by A II was inhibited by an angiotensin antagonist, DD-3487 (DD). Moreover, the addition of a prostaglandin antagonist, a mixture of polyesters of polyphloretin phosphate (PPP) and an inhibitor of prostaglandin synthesis, indomethacin, was effective in inhibiting A II-induced stimulation of the capsular adenylate cyclase activity, suggesting that the activation of A II receptors located on the capsular membrane leads to the release of prostaglandins, which in turn stimulates the adenylate cyclase.  相似文献   

15.
Epinephrine inhibits human platelet adenylate cyclase by an alpha 2-adrenoceptor-mediated and GTP-dependent process. The turn-off reaction for this epinephrine-inhibited enzyme was studied by measuring the rate of cyclic AMP formation upon addition of the alpha2-adrenoceptor antagonist, yohimbine, or upon addition of an excess of the stable GDP analog, guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which competitively inhibited the action of GTP in the epinephrine-induced inhibition. The decay of the inhibited state of the adenylate cyclase was used to calculate the rate constant of the turn-off reaction. With both methods, almost identical koff values of 0.6-0.7 min-1 at 25 degrees C were obtained for the epinephrine-inhibited platelet enzyme. Cholera toxin, which does not inhibit the epinephrine-induced GTPase stimulation in platelet membranes, did not affect this turn-off reaction. In contrast, the turn-off rate of the prostaglandin-E1-stimulated human platelet adenylate cyclase, measured with GDP beta S, was reduced from about 9 min-1 to 2 min-1 at 25 degrees C by pretreatment of the membranes with cholera toxin, which inhibits the prostaglandin-E1-stimulated GTPase activity. The data strongly suggest that the guanine nucleotide regulatory site, mediating epinephrine-induced adenylate cyclase inhibition, is activated and inactivated by similar mechanisms as is the site mediating adenylate cyclase stimulation, and that cholera toxin affects only the stimulatory site. The findings furthermore suggest that the activity states of these two regulatory sites control the activity of the adenylate cyclase.  相似文献   

16.
Synthetic human pancreatic growth hormone-releasing factor (hpGRF) (1–40)-NH2 stimulates adenylate cyclase activity in rat anterior pituitary particulate fraction at an ED50 value of approximately 150 nM. GTP more than doubles the stimulatory effect of hpGRF aand PGE2 on [32p] cyclic AMP formation. The present data show that hpGRF as well as PGE2, another potent stimulus of GH secretion, act at least partly, through GTP-dependent mechanisms in their coupling with adenylate cyclase.  相似文献   

17.
1. The lipids composition of rat liver plasma membranes was substantially altered by introducing synthetic phosphatidylcholines into the membrane by the techniques of lipid substitution or lipid fusion. 40-60% of the total lipid pool in the modified membranes consisted of a synthetic phosphatidylcholine. 2. Lipid substitution, using cholate to equilibrate the lipid pools, resulted in the irreversible loss of a major part of the adenylate cyclase activity stimulated by F-, GMP-P(NH)P or glucagon. However, fusion with presonicated vesicles of the synethic phosphatidylcholines causes only small losses in adenylate cyclase activity stimulated by the same ligands. 3. The linear form of the Arrhenius plots of adenylate cyclase activity stimulated by F- or GMP-(NH)P was unaltered in all of the membrane preparations modified by substitution or fusion, with very similar activation energies to those observed with the native membrane. The activity of the enzyme therefore appears to be very insensitive to its lipid environment when stimulated by F- or gmp-p(nh)p. 4. in contrast, the break at 28.5 degrees C in the Arrhenius plot of adenylate cyclase activity stimulated by glucagon in the native membrane, was shifted upwards by dipalmitoyl phosphatidylcholine, downwards by dimyristoyl phosphatidylcholine, and was abolished by dioleoyl phosphatidylcholine. Very similar shifts in the break point were observed for stimulation by glucagon or des-His-glucagon in combination with F- or GMP-P(NH)P. The break temperatures and activation energies for adenylate cyclase activity were the same in complexes prepared with a phosphatidylcholine by fusion or substitution. 5. The breaks in the Arrhenius plots of adenylate cyclase activity are attributed to lipid phase separations which are shifted in the modified membranes according to the transition temperature of the synthetic phosphatidylcholine. Coupling the receptor to the enzyme by glucagon or des-His-glucagon renders the enzyme sensitive to the lipid environment of the receptor. Spin-label experiments support this interpretation and suggest that the lipid phase separation at 28.5 degrees C in the native membrane may only occur in one half of the bilayer.  相似文献   

18.
Extracellular cAMP induces excitation of adenylate and guanylate cyclase in Dictyostelium discoideum. Continuous stimulation with cAMP leads to adaptation, while cells deadapt upon removal of the cAMP stimulus. Excitation of guanylate cyclase by cAMP has a lag time of approximately 1 s; excitation of adenylate cyclase is much slower with a lag time of 30 s. Excitation of both enzyme activities is less than twofold slower at 0 degrees C than at 20 degrees C. Adaptation of guanylate cyclase is very fast (t1/2 = 2.4 s at 20 degrees C), and virtually absent at 0 degrees C. Adaptation of adenylate cyclase is much slower (t1/2 = 110 s at 20 degrees C) but not very temperature sensitive (t1/2 = 290 s at 0 degrees C). At 20 degrees C, deadaptation of adenylate cyclase is about twofold slower than deadaptation of guanylate cyclase (t1/2 = 190 and 95 s, respectively). Deadaptation of adenylate cyclase is absent at 0 degrees C, while that of guanylate cyclase proceeds slowly (t1/2 = 975 s). The results show that excitation, adaptation, and deadaptation of guanylate cyclase have different kinetics and temperature sensitivities than those of adenylate cyclase, and therefore are probably independent processes.  相似文献   

19.
1. The effect of various proteolytic enzymes was assayed on the adenylate cyclase activity in purified brain membrane preparations from the insect Ceratitis capitata. Trypsin, chymotrypsin, papain, thermolysin, elastase, subtilisin and prot. XIV were examined. 2. Trypsin treatment, at 37 degrees C, decreased the adenylate cyclase activity even in the presence of GppNHp that protects the activity from the thermal inactivation. 3. Residual basal, GppNHp- and F(-)-stimulated activities were similar when membrane preparations were preincubated either in the presence or in the absence of GppNHp and F-. 4. All proteolytic activities assayed on the brain membrane preparations, excepting papain, exerted an inhibition of adenylate cyclase in basal conditions. 5. The inhibition was stronger in the presence of F- than in the presence of other regulators. 6. Papain showed also a notable inhibition of adenylate cyclase in the presence of F-. 7. Phospholipase A2 treatment decreased both basal and stimulated activity; however, F(-)-sensitive activity was less affected than basal and GppNHp-sensitive activity. F(-)-stimulated activity was less affected by phospholipase A2 than either basal or GppNHp-stimulated activities. 8. Phospholipids are, then, essential for the highest basal activity, although the relationship between catalytic and nucleotide-regulatory components was unaffected by this treatment.  相似文献   

20.
Calcium (Ca2+) ion concentrations that are achieved intracellularly upon membrane depolarization or activation of phospholipase C stimulate adenylate cyclase via calmodulin (CaM) in brain tissue. In the present study, this range of Ca2+ concentrations produced unanticipated inhibitory effects on the plasma membrane adenylate cyclase activity of GH3 cells. Ca2+ concentrations ranging from 0.1 to 0.8 microM exerted an increasing inhibition on enzyme activity, which reached a plateau (35-45% inhibition) at around 1 microM. This inhibitory effect was highly cooperative for Ca2+ ions, but was neither enhanced nor dependent upon the addition of CaM (1 microM) to EGTA-washed membranes. The inhibition was greatly enhanced upon stimulation of the enzyme by vasoactive intestinal peptide (VIP) and/or GTP. Prior exposure of cultured cells to pertussis toxin did not affect the inhibition of plasma membrane adenylate cyclase activity by Ca2+, although in these membranes, hormonal (somatostatin) inhibition was significantly attenuated. Maximally effective concentrations of Ca2+ and somatostatin produced additive inhibitory effects on adenylate cyclase. The addition of phosphodiesterase inhibitors demonstrated that inhibitory effects of Ca2+ were not mediated by Ca2(+)-dependent stimulation of a phosphodiesterase activity. These observations provide a mechanism for the feedback inhibition by elevated intracellular Ca2+ levels on cAMP-facilitated Ca2+ entry into GH3 cells, as well as inhibitory crosstalk between Ca2(+)-mobilizing signals and adenylate cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号