首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.  相似文献   

2.
By means of immunohistochemistry and radioimmunoassay (RIA), we have investigated the possible occurrence of somatostatin (SOM)-like immunoreactivity (-LI) in the autonomic innervation of the pig nasal mucosa. SOM-immunoreactive (-IR) fibres were present around nasal arteries, arterioles and venous sinusoids. Double-labelling experiments revealed that SOM-LI was co-localized with the noradrenaline (NA) markers tyrosine hydroxylase and dopamine-β-hydroxylase as well as with neuropeptide Y (NPY) in a subpopulation of neurons in the superior cervical sympathetic ganglion and in perivascular nerve terminals. Furthermore, SOM-LI was also present in perivascular fibres containing vasoactive intestinal polypeptide (VIP) and NPY of presumably parasympathetic origin. The parasympathetic fibres that were associated with glands contained peptide histidine isoleucine (PHI), VIP and NPY but not SOM, suggesting that in the nasal mucosa SOM-IR is restricted to perivascular nerves. As revealed by RIA, the content of SOM-LI in biopsies of both nasal mucosa and superior cervical sympathetic ganglion was about 12 pmol/g and the reverse phase HPLC characterisation of SOM-LI shown two separate peaks for SOM-28 and SOM-14.  相似文献   

3.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel vasoactive intestinal peptide (VIP)-like peptide, which is present in neuronal elements of several peripheral organs, and thus a putative neurotransmitter/modulator. In the present study, the expression of PACAP in two parasympathetic ganglia (otic, sphenopalatine) and one mixed parasympathetic/sensory ganglion (jugular-nodose) in rat was characterized by use of in situ hybridization and immunocytochemistry and compared to that of VIP and calcitonin gene-related peptide (CGRP). PACAP and VIP were expressed in virtually all nerve cell bodies in the otic and sphenopalatine ganglia; PACAP and VIP were also expressed in subpopulations of nerve cell bodies in the jugular-nodose ganglion. CGRP was expressed in numerous nerve cell bodies in the jugular-nodose ganglion and in a few, scattered, nerve cell bodies in the sphenopalatine ganglion. In the otic and sphenopalatine ganglia, PACAP- and VIP-like immunoreactivities were frequently co-localized; in the jugular-nodose ganglion, PACAP-like immunoreactivity was frequently co-localized with CGRP-like immunoreactivity in presumably sensory neurons and to a lesser extent with VIP in parasympathetic neurons. Thus, PACAP is synthesized and stored in autonomic parasympathetic neurons as well as in vagal sensory neurons, which provides an anatomical basis for the diverse effects of PACAP previously described.  相似文献   

4.
In order to study biosynthetic processing of the precursor for vasoactive intestinal peptide (preproVIP) in the human gut we have developed antisera against the five functional domains of the precursor molecule: preproVIP 22-79, peptide histidine methionine (PHM), preproVIP 111-122, VIP and preproVIP 156-170. The antisera were used to quantify and characterize VIP-precursor peptides by radioimmunoassay (RIA) together with high-pressure liquid Uchromatography (HPLC) and to examine their cellular localization and colocalization by immunocytochemistry. All five peptides were expressed but not in equimolar amounts as expected from the amino acid sequence of the precursor. However, the ratios between them were fairly constant throughout the gastrointestinal tract. The only exceptions were the lower concentrations of PHM and preproVIP 111-122 in the gastric antrum which could be explained by the presence of PHV (the C-terminally extended form of PHM which includes preproVIP 111-122) in large concentrations in this region. It was also found that the C-terminal lysine residue of preproVIP is not removed during processing. Immunocytochemically all preproVIP-derived peptides were shown in neuronal elements. They had a similar distribution throughout the gut suggesting coexistence, a finding which was supported by doublestaining. The findings indicate that differences in the posttranslational processing of preproVIP exist in subpopulations of neurons in the human gut.  相似文献   

5.
大鼠鼻粘膜肽能神经末梢分布的研究   总被引:1,自引:0,他引:1  
用免疫组化技术(ABC法)系统研究了大鼠鼻粘膜9种肽能神经末梢分布的特征,这9种神经肽分别是P物质(substanceP,SP),神经激肽A(neurokininA,NKA),神经激肽B(neurokininB,NKB),降钙素基因相关肽(calcitoningene-relatedpeptide,CGRP),血管活性肠多肽(vasoactiveintestinalpolypeptide,VIP),神经肽Y(neuropeptideY,NPY),甘丙肽(galanin,GAL),生长抑素(somatostatin,SOM)及神经降压素(neurotensin,NT),同时选择与鼻粘膜神经肽(NP)作用密切相关的三叉神经节(TG)细胞进行上述NP的定位。用重组PSP65质粒(400SOMcDNA)制备SOMmRNA单链探针,以地高辛精标记,在鼻粘膜及TG细胞进行SOMmRNA的原位杂交组化研究。结果提示大鼠鼻粘膜有丰富的肽能神经末梢;TG细胞含有多种NP并且可以合成SOM。该研究结果对重新认识鼻粘膜神经分布规律有一定意义。  相似文献   

6.
Vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and neuropeptide Y (NPY) are neuropeptides present in all layers of the small intestine. NPY-immunoreactive fibres in the gut seem to derive from two sources. One population is of extramural (sympathetic) origin and contains noradrenaline, another is of intramural origin and does not contain noradrenaline. In the present study of mouse, rat and pig, immunocytochemistry showed immunoreactive PHI to coexist completely with immunoreactive VIP. This was predictable, since VIP and PHI derive from the same precursor. In addition, however, VIP and PHI were found to coexist with immunoreactive NPY in non-adrenergic (but not in adrenergic) nerve fibres and nerve cell bodies. This coexistence was unexpected, since the VIP precursor does not contain NPY-like sequences.  相似文献   

7.
VIP and PHI share sequence homology and certain biological actions. Immunocytochemistry and radioimmunoassay were used to see if the two peptides also have similar distributions in the gut of the pig. PHI-immunoreactive fibres were found, like those containing VIP, in all layers of the bowel wall but in lesser numbers. Unlike VIP-immunoreactive nerves, however, which are ubiquitous in the gastrointestinal tract, PHI-containing neurons were numerous in all areas except the fundus, where only few fibres and no ganglion cells were found to be reactive to PHI antibodies. PHI and VIP immunoreactive materials were also quantified by specific radioimmunoassay of tissue extracts. The concentrations of PHI and VIP were similar in all regions of the gut, except in the fundus where the quantities of VIP-immunoreactivity far exceeded those of PHI. The presence of both VIP- and PHI-immunoreactivities in ganglion cells of the sub-mucous plexus allowed investigation of the co-localisation of the peptides. Serial sections through ganglion cells revealed that a major proportion contain both PHI- and VIP-immunoreactivity. Some cells contained VIP alone, or VIP and weak, equivocal immunostaining of PHI, and a sub-population contained no peptide-immunoreactivity. The presence of both VIP- and PHI-immunoreactivities in the same ganglion cell supports the recent reports of the isolation and characterisation, using genetic technology, of their common precursor molecule. The finding of VIP and not PHI in the fundic region suggests the differential expression of the two peptides.  相似文献   

8.
Summary The neuronal subpopulations in the cat stellate, lower lumbar and sacral sympathetic ganglia were studied with regard to the cellular distribution of immunoreactivity to tyrosine hydroxylase (TH), acetylcholinesterase (AChE) and various neuronal peptides. Coexistence of neuropeptide Y (NPY)- and galanin (GAL)-like immunoreactivity (LI) was found in a high proportion of the neuronal cell bodies; these cells also contained immunoreactivity to TH, confirming their presumably noradrenergic nature. Some TH- and GAL-immunoreactive principal ganglion cells lacked NPY-LI. Two populations (scattered and clustered) of vasoactive intestinal polypeptide (VIP)- and peptide histidine isoleucine (PHI)-positive cell bodies were found in the sympathetic ganglia studied. The scattered VIP/PHI neurons also contained AChE-LI, calcitonin gene-related peptide (CGRP)-and, following culture, substance P (SP)-LI. The clustered type only contained AChE-LI. In the submandibular and sphenopalatine ganglia, neurons were AChE- and VIP/ PHI-immunoreactive but lacked CGRP- and SP-LI. Many GAL- and occasional TH-positive neurons were found in these ganglia. In the spinal ganglia, single NPY-immunoreactive sensory neuronal cells were observed, in addition to CGRP- and SP-positive neurons. The present results show that there are at least two populations of sympathetic cholinergic neurons in the cat. Retrograde tracing experiments indicate that the scattered type of cholinergic neurons contains four vasodilator peptides (VIP, PHI, CGRP, SP) and provides an important input to sweat glands, whereas the clustered type (containing VIP and PHI) mainly innervates blood vessels in muscles.  相似文献   

9.
M Huang  H Itoh  K Lederis  O Rorstad 《Peptides》1989,10(5):993-1001
Vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are homologous neuropeptides which share vasodilatory properties. This paper addresses the question of whether PHI exerts its vascular action via a receptor distinct from that for VIP. Radioligand binding experiments were done using [Tyr(125I)10]VIP, [Tyr(125I)22]porcine PHI, [Tyr(125I)10]rat PHI and arterial preparations from rat, bovine and porcine species. The radioiodination of rat PHI by the lactoperoxidase-glucose oxidase method and analysis of the structure of the major radiolabeled derivatives were described. All the receptor binding experiments identified a VIP-preferring receptor irrespective of which radioligand or arterial preparation was utilized. VIP and PHI peptides demonstrated cross-desensitization in studies of relaxation of porcine coronary arterial strips in vitro. The present results favor the conclusion that the vascular actions of the PHI peptides are best explained by binding to a VIP-preferring receptor.  相似文献   

10.
Abstract: The 27 amino acid peptide, pituitary adenylate cyclase-activating polypeptide (PACAP-27), and its 38 amino acid analogue, PACAP-38, stimulate serotonin- N -acetyltransferase (NAT) activity and N -acetylserotonin (NAS) and melatonin content of pineal glands from adult rats. Maximal stimulation of rat pineal NAT by PACAP-38 is not increased further significantly by concurrent stimulation with the two related peptides, vasoactive intestinal polypeptide (VIP) and/or peptide N-terminal histidine C-terminal isoleucine (PHI). Isoproterenol was a more potent inducer of NAT activity than any of these peptides alone or in combination. PACAP-38 also stimulates melatonin production by chicken pineal cells in culture as does VIP. Stimulation by both was not greater than after either alone. Prior stimulation of rat pineal NAT activity with VIP, PHI, or PACAP-38 reduces the magnitude of subsequent stimulation with PACAP-38 or forskolin. Concurrent stimulation of α-receptors or treatment with active phorbol ester augments rat pineal response to PACAP-38 stimulation just as it increases the response to VIP, PHI, and β-receptor stimulation. Pineals from newborn rats respond to PACAP-38 with an increase in NAT activity and the increase is augmented by concomitant α1-adrenergic stimulation. The putative PACAP inhibitor PACAP (6–38) and the putative VIP inhibitor (Ac-Tyr, d -Phe)-GRF 1–29 amide, in 100–1,000-fold excess, did not affect the stimulatory activity of any of the peptides. Pineal melatonin concentration parallels changes in pineal NAT activity.  相似文献   

11.
The concentrations of vasoactive intestinal polypeptide (VIP) and the peptide with NH2- terminal histidine and COOH-terminal isoleucine (PHI) in various peripheral tissues and some areas in the CNS of the cat were compared with their immunohistochemical localization. The VIP levels in the gastrointestinal tract were 3 to 6 times higher than PHI levels. Much (up to 10-fold) higher VIP than PHI levels were also observed in the genitourinary tract as well as in the lung and heart. In the neurohypophysis, however, the VIP/PHI ratio was close to 1. Gel-permeation chromatography revealed that VIP- and PHI-immunoreactivity (IR) in the intestine, pancreas and brain consisted of three larger molecular forms in addition to the 'standard' peptides. These larger forms which had overlapping elution positions may represent prepro-VIP/PHI forms. The immunohistochemical analysis revealed that VIP- and PHI-IR was present in the same ganglion cells in the intestine, pancreas, uterus and sympathetic ganglia. Furthermore, the terminal networks for these two peptides were very similar in the periphery. In the median eminence of the hypothalamus and in the posterior lobe of the pituitary, considerably more nerves were PHI- than VIP-IR. This observation was in parallel to a low VIP/PHI ratio. In conclusion, VIP and PHI seem to co-exist in most neuronal systems. Although the ratio of VIP and PHI on the precursor gene is 1:1, differences in posttranslational processing may create a considerably higher content of VIP than PHI in most terminal areas.  相似文献   

12.
Choroid plexus from rat, guinea-pig, rabbit and pig was investigated by light-microscopic immunohistochemistry and by radioimmunoassay for the presence of neuropeptides. A moderately dense supply of nerve fibers containing neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), respectively, was found around blood vessels and in close relation to the secretory epithelium in both pig and rabbit, while lower densities of nerve fibers were found in rat and guinea-pig. Peptide concentrations ranged from 10-40 pmolequivalents/g (pmoleqv/g) for NPY and 0.5-6 pmoleqv/g for VIP in all four species. Peptide histidine isoleucine (PHI) immunoreactive nerve fibers were present in pig choroid plexus at a lower density than NPY and VIP but with a similar distribution. Low concentrations of substance P (0.3-3 pmoleqv/g) and calcitonin gene-related peptide (0.1-3 pmoleqv/g) were found to a varying degree in choroid plexus tissue from the different species, while immunohistochemical investigation was unable to detect any immunoreactive nerve fibers. NPY was often found to coexist with VIP and PHI in pig choroid plexus, while a lesser amount of nerve fibers showed coexistence of NPY and the noradrenaline synthetizing enzyme, dopamine-beta-hydroxylase. Surgical sympathetic denervation by excision of the superior cervical ganglion in the rabbit abolished NPY-containing nerve fibers, as revealed by immunohistochemistry, but only decreased NPY levels by one third, which may be due to different identity of the peptide being detected by the two techniques. It is concluded that NPY-containing nerve fibers have a dual origin in the choroid plexus and coexist with either noradrenaline or VIP/PHI.  相似文献   

13.
Studies on the distribution of PHI in mammals   总被引:6,自引:0,他引:6  
We have developed a sensitive and specific radioimmunoassay to PHI and investigated its distribution in four mammalian species (man, cat, guinea-pig and rat). PHI was present in high concentrations, not only in intestine but also in brain, respiratory tract, urogenital tract and other peripheral tissues. Its distribution was similar to that of VIP and in each tissue examined there was always a significant correlation between the concentrations of these two peptides. In a survey of endocrine tumours, PHI was found to be produced only in those tumours that also produced VIP. In addition PHI was only elevated in the plasma of patients that also had high plasma VIP concentrations. This parallel distribution and release was found to be due to the co-synthesis of VIP and PHI in the same pro-hormone peptide. However, the variable ratio of VIP/PHI in different anatomical areas suggest that in these areas there is a different post-translational enzyme processing of the precursor protein.  相似文献   

14.
The vasoactive intestinal polypeptide (VIP) receptor was characterized on the GH3 rat pituitary tumor cell line using competitive binding studies with peptides having sequence homology with VIP. Further studies investigated receptor coupling to the adenylate cyclase complex by measurement of cAMP levels. Finally, the molecular weight of the receptor was estimated by affinity labeling techniques. Studies using 125I-VIP and unlabeled competing peptides revealed a single class of high affinity binding sites with a dissociation constant (KD) of 17 +/- 2 nM (mean +/- S.E.M.) for VIP, 275 +/- 46 nM for peptide histidine isoleucine (PHI), and 1380 +/- 800 nM for human pancreatic growth hormone releasing factor (GHRF). VIP and PHI each stimulated intracellular cAMP accumulation in a dose-dependent manner; both peptides demonstrated synergism with forskolin. In contrast, GHRF neither stimulated accumulation of cAMP nor demonstrated synergism with forskolin. VIP plus PHI (1 microM each) caused no significant increase in cAMP over either VIP or PHI alone, implying that the two peptides act through the same receptor. Covalent crosslinking of 125I-VIP to its binding site using either disuccinimidyl suberate (DSS) or ethylene glycol bis(succinimidyl succinate) (EGS) was followed by SDS-PAGE and autoradiography. The result is consistent with an Mr 47 000 VIP-binding subunit comprising or being associated with the VIP receptor of GH3 pituitary tumor cells.  相似文献   

15.
The presence of receptors, recognized by vasoactive intestinal peptide (VIP) as well as by PHI (a peptide with N-terminal histidine and C-terminal isoleucine amide), was documented in lung membranes from rat, mouse, guinea pig and man by the ability of these receptors, once occupied, to stimulate adenylate cyclase. In lung membranes from rat, mouse and guinea pig, the capacity of VIP, PHI and secretin to stimulate the enzyme and the potency of the same peptides to compete with 125I-VIP for binding to VIP receptors were similar, the affinity decreasing in the order: VIP greater than PHI greater than secretin. In addition, dose-effect curves were compatible with the coexistence of high-affinity and low-affinity VIP receptors, in the four animal species considered. If PHI was able to recognize all VIP receptors it could not, however, discriminate the subclasses of VIP receptors.  相似文献   

16.
Pelvic ganglia are mixed sympathetic-parasympathetic ganglia and provide the majority of the autonomic innervation to the urogenital organs. Here we describe the structural and histochemical features of the major pelvic ganglion in the male mouse and compare two different mouse strains. The basic structural features of the ganglion are similar to those in the male rat. Almost all pelvic ganglion cells are monopolar and most are cholinergic. All contain either neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP), or both peptides together. The peptide coexistence varies between strains, with C57BL/6 mice having similar proportions of neurons with NPY alone, VIP alone or both peptides. In contrast, virtually all pelvic neurons in the Quackenbush-Swiss (QS) strain express NPY, i.e. the level of VIP/NPY coexistence is much higher. Cholinergic axons provide the major nerve supply to epithelia of reproductive organs, bladder smooth muscle and, as described previously, penile erectile tissue. They also provide a minor component of the smooth muscle innervation of the prostate gland, seminal vesicles and vas deferens. Virtually all non-cholinergic pelvic ganglion cells are noradrenergic and contain NPY. Their major target is smooth muscle of reproductive organs. This study shows that the male mouse pelvic ganglion bears many similarities to that in the rat, but that VIP/NPY colocalisation is much more common in the mouse. We also show that there are differences in peptide expression in parasympathetic pelvic neurons between strains of mice. These studies provide the framework for future investigations on neural regulation of urogenital function, particularly in transgenic and knockout models.  相似文献   

17.
R A Lefebvre  S Sas  A Cauvin 《Peptides》1991,12(2):271-274
It was previously shown that porcine PHI is 30 times less potent than VIP in relaxing the rat gastric fundus; the relaxant potency of rat PHI and its 2 C-terminally extended forms PHI-Gly and PHV(1-42) in the rat gastric fundus was compared here with that of VIP, porcine PHI and PHM. The rank order of potency in relaxing the precontracted fundus tissues was VIP greater than rat PHI greater than PHM greater than PHV greater than PHI-Gly greater than porcine PHI, rat PHI being only 2 times less potent than VIP. In the presence of antioxidants, the potency and efficacy of porcine PHI increased, but the peptide was still the least potent of the series tested. The results illustrate the importance of using species-related peptides and are compatible with a cotransmitter role of rat PHI in nonadrenergic noncholinergic neurotransmission of the rat gastric fundus.  相似文献   

18.
Summary The subcellular distribution of noradrenaline (NA), neuropeptide Y (NPY), Met and Leu-enkephalin (ENK), substance P (SP), somatostatin (SOM), and vasoactive intestinal polypeptide (VIP) was investigated in homogenates of bovine splenic nerve. The distribution of noradrenergic peptide-containing nerves in the bovine celiac ganglion, splenic nerve and terminal areas in spleen was studied by indirect immunofluorescence histochemistry using antisera to tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), NPY, enkephalin peptides, SP, SOM, VIP and peptide HI (PHI).After density gradient centrifugation, high levels of NPY and ENK-like immunoreactivity (LI) were found in high-density gradient fractions, coinciding with the main NA peak. SP, SOM and VIP were found in fractions with a lower density, VIP being also enriched in a heavy fraction; the latter three peptides were present in low concentrations.Immunohistochemistry revealed that staining for NPYLI and ENK-LI partly overlapped that for TH and DBH in celiac ganglia, splenic nerve axons and terminal areas of spleen. Almost all principal ganglion cells were TH- and DBH-immunoreactive. Many were also NPY-immunoreactive, whereas a smaller number were ENK-positive. In the celiac ganglion patches of dense SP-positive networks and some VIP/PHI- and ENK-immunoreactive fibers were seen around cell bodies.The results indicate that NPY and ENK are stored with NA in large dense-cored vesicles in unmyelinated axons of bovine splenic nerve. SP, SOM and VIP appear in different organelles in axon populations separate from sympathetic noradrenergic nerves.  相似文献   

19.
Immunoreactive vasoactive intestinal peptide (VIP) and substance P (SP) were studied in parotid, submaxillary and sublingual glands of the rat. The concentration of VIP was highest in the submaxillary gland and lowest in the parotid gland. The concentration of SP was highest in the parotid gland; it was at, or below the limit of detection in the sublingual gland. In the parotid gland the total amounts of VIP and SP were reduced by 95% after parasympathetic denervation (section of the auriculo-temporal nerve). In the submaxillary gland the total amounts of the peptides were unchanged after parasympathetic decentralization (section of the chorda-lingual nerve). In this gland the total amount of SP was reduced by 92% and that of VIP by 50%, when the chorda tympani nerve fibres were cut deep into the hilum. Cutting the nerve fibres at the hilum left the total amounts of the peptides unchanged in the submaxillary gland, whereas in the sublingual gland the total amount of VIP was reduced by 70%. Sympathetic denervation did not reduce the total amounts of the peptides. Duct ligation caused gland atrophy. In the parotid gland the total amounts of VIP and SP were reduced by 40%. In the submaxillary gland the same percentage reduction occurred with regard to SP; however, the total amount of VIP was reduced by 99%. The VIP- and SP-containing nerve fibres reach the salivary glands by the parasympathetic nerves. In both submaxillary and sublingual glands a certain fraction of VIP originates within the glands.  相似文献   

20.
The subcellular distribution of peptide histidine isoleucine amide (PHI)-27-like peptides (PLP) was investigated in rat cerebral cortex and whole rat brain in comparison with the distribution of vasoactive intestinal peptide (VIP). The highest content of PLP was found in the crude mitochondrial fraction (P2) and was also detected in the microsomal pellet. PLP was recovered in synaptosomes when further fractionation of P2 was performed. This distribution of PLP closely follows that of VIP and is suggestive of possible storage in vesicles at the nerve terminal. Basal release of PLP from rat cerebral cortical slices was below the detection limit of the PHI radioimmunoassay. However, depolarization by 55 mM potassium induced measurable PLP release. This release was calcium-dependent. These findings support the hypothesis that PLP could play a role in neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号