首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and rapid high-performance liquid chromatographic method with fluorescence detection was developed for the determination of loratadine in small volume plasma samples. Liquid-liquid extraction of loratadine and diazepam (as internal standard) from plasma samples was performed with n-butyl alcohol/n-hexane (2:98, v/v) in alkaline condition followed by back-extraction into diluted perchloric acid. Chromatography was carried out using a C8 column (250 x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-20 mM sodium dihydrogen phosphate-triethylamine (43:57:0.02, v/v), pH 2.4. Analyses were run at a flow-rate of 1.0 ml/min at room temperature. The method was specific and sensitive with a quantitation limit of 0.62 ng/ml and a detection limit of 0.2 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery of loratadine from plasma was 84%, while the intra-and inter-day coefficient of variation and percent error values of the assay method were all less than 9.7%. Linearity was assessed in the range of 0.62-20 ng/ml in plasma with a correlation coefficient of greater than 0.999. The method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

2.
A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate–acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15–2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.  相似文献   

3.
A simple high-performance liquid chromatographic method using ultraviolet detection was developed for the determination of metformin in human plasma. The method entailed direct injection of the plasma sample after deproteination using perchloric acid. The mobile phase comprised 0.01 M potassium dihydrogen orthophosphate (pH 3.5) and acetonitrile (60:40, v/v). Analyses were run at a flow-rate of 1.0 ml/min with the detector operating at a detection wavelength of 234 nm. The method is specific and sensitive, with a quantification limit of approximately 60 ng/ml and a detection limit of 15 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery value was about 97%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The calibration curve was linear over a concentration range of 62.5–4000 ng/ml.  相似文献   

4.
A rapid, selective and sensitive high-performance liquid chromatographic method with spectrophotometric detection was developed for the determination of clarithromycin in human plasma. Liquid-liquid extraction of clarithromycin and norverapamil (as internal standard) from plasma samples was performed with n-hexane/1-butanol (98:2, v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a CN column (250 mm x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-50 mM aqueous sodium dihydrogen phosphate (32:68, v/v), pH 4.5. Detection was made at 205 nm and analyses were run at a flow-rate of 1.0 ml/min at 40 degrees C. The analysis time was less than 11 min. The method was specific and sensitive with a quantification limit of 31.25 ng/ml and a detection limit of 10 ng/ml in plasma. The mean absolute recovery of clarithromycin from plasma was 95.9%, while the intra- and inter-day coefficient of variation and percent error values of the assay method were all less than 9.5%. Linearity was assessed in the range of 31.25-2000 ng/ml in plasma with a correlation coefficient of greater than 0.999. The method was used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

5.
A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of ketoconazole in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile. The mobile phase comprised 0.05 M disodium hydrogen orthophosphate and acetonitrile (50:50, v/v) adjusted to pH 6. Analysis was run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 260 nm and an emission wavelength of 375 nm. The method is specific and sensitive with a quantification limit of approximately 60 ng/ml and a detection limit of 40 ng/ml at a signal-to-noise ratio of 3:1. Mean absolute recovery value was about 105%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 14%. The calibration curve was linear over a concentration range of 62.5–8000 ng/ml.  相似文献   

6.
An enantioseparation of the antipsychotic drug butaclamol in human plasma by high-performance liquid chromatography (HPLC) with solid phase extraction is presented. The separation was achieved on the vancomycin macrocyclic antibiotic chiral stationary phase (CSP) Chirobiotic V with a polar ionic mobile phase (PIM) consisting of methanol : glacial acetic acid : triethylamine (100:0.2:0.05, v/v/v) at a flow rate of 0.5 ml/min. The detection wavelength was 262 nm. Bond Elut C18 solid phase extraction cartridges were used in the sample preparation of butaclamol samples from plasma. The method was validated over the range of 100-3,000 ng/ml for each enantiomer concentration (R(2) > 0.999). Recoveries for (+)- and (-)-butaclamol were in the range of 94-104% at the 300-2,500 ng/ml level. The method proved to be precise (within-run precision ranged from 1.1-2.6% and between-run precision ranged from 1.9-3.2%) and accurate (within-run accuracies ranged from 1.5-5.8% and between-run accuracies ranged from 2.7-7.7%). The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 ng/ml and 50 ng/ml, respectively.  相似文献   

7.
A reversed-phase high-performance liquid chromatographic method for the determination of benflumetol in human plasma is described. Benflumetol in plasma samples was extracted with a glacial acetic acid-ethyl acetate (1:100, v/v) mixture at pH 4.0. Chromatography was performed on a Spherisorb C18 column using a methanol-water-glacial acetic acid-diethyl amine (93:6:1:0.03, v/v) mixture as the mobile phase and UV-VIS detection at 335 nm. The identity and purity of the benflumetol peak were carefully examined, and the internal standard method was applied for its quantitation. The absolute recovery of benflumetol in spiked plasma samples was 92.91% over the concentration range 5–4000 ng/ml. The recovery of internal standard “8212” at a concentration of 300 ng/ml in spiked plasma was 84.85%. The detection limit of benflumetol was 11.8 ng/ml. Plasma concentration-time profiles in healthy volunteer adults were measured after a single-dose oral administration of 500 mg of benflumetol. The assay procedures were within the quality control limits.  相似文献   

8.
A simple high-performance liquid chromatographic procedure was developed for the determination of ranitidine in human plasma. The method entailed direct injection of the plasma samples after deproteination using perchloric acid. The chromatographic separation was accomplished with an isocratic elution using mobile phase consisting of 21 mM disodium hydrogen phosphate–triethylamine-acetonitrile (1000:60:150, v/v), pH 3.5. Analyses were run at a flow-rate of 1.3 ml/min using a μbondapak C18 column and ultraviolet detection at a wavelength of 320 nm. The method was specific and sensitive, with a quantification limit of approximately 20 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 96%, while the within- and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The linearity was assessed in the range of 20–1000 ng/ml plasma, with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

9.
A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artesunic acid (ARS), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARS and DQHS were analysed using an Econosil C8 column and a mobile phase of acetonitrile–0.05 M acetic acid (42:58, v/v) adjusted to pH 5.0 and electrochemical detection in the reductive mode. The mean recovery of ARS and DQHS over a concentration range of 50–200 ng/ml was 75.5% and 93.5%, respectively. The within-day coefficients of variation were 4.2–7.4% for ARS and 2.6–4.9% for DQHS. The day-to-day coefficients of variation were 1.6–9.6% and 0.5–8.3%, respectively. The minimum detectable concentration for ARS and DQHS in plasma was 4.0 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.  相似文献   

10.
We have developed a simple, sensitive, specific and reproducible stereoselective high-performance liquid chromatography technique for analytical separation of cisapride enantiomers and measurement of cisapride enantiomers in human plasma. A chiral analytical column (ChiralCel OJ) was used with a mobile phase consisting of ethanol–hexane–diethylamine (35:64.5:0.5, v/v/v). This assay method was linear over a range of concentrations (5–125 ng/ml) of each enantiomer. The limit of quantification was 5 ng/ml in human plasma for both cisapride enantiomers, while the limit of detection was 1 ng/ml. Intra- and inter-day C.V.s did not exceed 15% for all concentrations except at 12.5 ng/ml for EII (+)-cisapride, which was 20 and 19%, respectively. The clinical utility of the method was demonstrated in a pharmacokinetic study of normal volunteers who received a 20 mg single oral dose of racemic cisapride. The preliminary pharmacokinetic data obtained using the method we describe here provide evidence for the first time that cisapride exhibits stereoselective disposition.  相似文献   

11.
We developed a sensitive and selective method for determining levels of sultopride, a neuroleptic drug of the substituted benzamide, in human plasma using high-performance liquid chromatography (HPLC) combined with UV detection and particle beam mass spectrometry (PBMS). Sutopride was extracted with tert.-butylmethyl ether using a salting-out technique. Tiapride served as an internal standard (I.S.). Sutopride and I.S. were separated by HPLC on a silica column with a mobile phase of acetonitrile-0.1 M ammonium acetate (94:6, v/v). The calibration curves were linear over the concentration range from 5 to 1000 ng/ml by HPLC with UV detection and from 10 to 1000 ng/ml with PBMS detection. The limit of quantitation was 5 ng/ml with UV detection and 10 ng/ml with PBMS detection. The absolute recovery was 92% and the within-day coefficients of variation were 2.9–7.1% at plasma concentrations from 50 to 500 ng/ml, determined by HPLC with UV detection. Using this method, we measured the plasma concentrations of sultopride with replicate analyses in four hospitalized patients and steady-state plasma levels were determined to be 161.6±30.8, 321.1±93.7, 726.5±143.1 and 1273.6±211.2 ng/ml, respectively.  相似文献   

12.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

13.
A rapid, selective and sensitive method for the determination of the angiotensin II receptor antagonist, telmisartan, in human plasma has been developed. Telmisartan and the internal standard, diphenhydramine, were extracted from plasma using diethyl ether-dichloromethane (60:40, v/v), and separated on a Zorbax extend C(18) column using methanol-10mM ammonium acetate (85:15, v/v) adjusted to pH 4.5 after mixing with formic acid as mobile phase. Detection was carried out by multiple reaction monitoring on a Q-trap LC-MS/MS system with an ESI interface. The assay was linear over the range 0.5-600.0 ng/ml with a limit of quantitation of 0.5 ng/ml and a limit of detection of 0.05 ng/ml. Intra- and inter-day precision were <6.7% and <8.1%, respectively, and the accuracy was in the range 88.9-111.0%. The assay was applied to a pharmacokinetic study of telmisartan given as a single oral dose (80 mg) to healthy volunteers.  相似文献   

14.
A high-performance liquid chromatographic (HPLC) method with fluorescence detection has been developed for the determination of rizatriptan in human plasma. Following a single-step liquid-liquid extraction with methyl tertiarybutyl ether, the analytes were separated using a mobile phase consisting of 0.05% (v/v) triethylamine in water (adjusting to pH 2.75 with 85% phosphoric acid) and acetonitrile (92:8, v/v). Fluorescence detection was performed at an excitation wavelength of 225nm and an emission wavelength of 360nm. The linearity for rizatriptan was within the concentration range of 0.5-50ng/ml. The intra- and inter-day precisions of the method were not more than 8.0%. The lower limit of quantification (LLOQ) was 0.5ng/ml for rizatriptan. The method was sensitive, simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

15.
An analytical method for the determination of artemether (A) and its metabolite dihydroartemisinin (DHA) in human plasma has been developed and validated. The method is based on high-performance liquid chromatography (HPLC) and electrochemical detection in the reductive mode. A, DHA and artemisinin, the internal standard (I.S.), were extracted from plasma (1 ml) with 1-chlorobutane—isooctane (55:45, v/v). The solvent was transferred, evaporated to dryness under nitrogen and the residue dissolved in 600 μl of water-ethyl alcohol (50:50, v/v). Chromatography was performed on a Nova-Pak CN, 4 μm analytical column (150 mm×3.9 mm I.D.) at 35°C. The mobile phase consisted of pH 5 acetate—acetonitrile (85:15, v/v) at a flow-rate of 1 ml/min. The analytes were detected by electrochemical detection in the reductive mode at a potential of −1.0 V Intra-day accuracy and precision were assessed from the relative recoveries (found concentration in % of the nominal value) of spiked samples analysed on the same day (concentration range 10.9 to 202 ng/ml of A and 11.2 to 206 ng/ml of DHA in plasma). The mean recoveries over the entire concentration range were from 96 to 100% for A with C .V. from 6 to 13%, from 92% to 100% for DHA (α-tautomer) with C .V. from 4 to 16%. For A, the mean recovery was 96% at the limit of quantitation (LOQ) of 10.9 ng/ml with a CV of 13%. For DHA, the mean recovery was 100% at the LOQ of 11.2 ng/ml with a CV of 16%.  相似文献   

16.
A HPLC method with automated column switching and UV detection is described for the simultaneous determination of retinol and major retinyl esters (retinyl palmitate, retinyl stearate, retinyl oleate and retinyl linoleate) in human plasma. Plasma (0.2 ml) was deproteinized by adding ethanol (1.5 ml) containing the internal standard retinyl propionate. Following centrifugation the supernatant was directly injected onto the pre-column packed with LiChrospher 100 RP-18 using 1.2% ammonium acetate–acetic acid–ethanol (80:1:20, v/v) as mobile phase. The elution strength of the ethanol containing sample solution was reduced by on-line supply of 1% ammonium acetate–acetic acid–ethanol (100:2:4, v/v). The retained retinol and retinyl esters were then transferred to the analytical column (Superspher 100 RP-18, endcapped) in the backflush mode and chromatographed under isocratic conditions using acetonitrile–methanol–ethanol–2-propanol (1:1:1:1, v/v) as mobile phase. Compounds of interest were detected at 325 nm. The method was linear in the range 2.5–2000 ng/ml with a limit of quantification for retinol and retinyl esters of 2.5 ng/ml. Mean recoveries from plasma were 93.4–96.5% for retinol (range 100–1000 ng/ml) and 92.7–96.0% for retinyl palmitate (range 5–1000 ng/ml). Inter-assay precision was ≤5.1% and ≤6.3% for retinol and retinyl palmitate, respectively. The method was successfully applied to more than 2000 human plasma samples from clinical studies. Endogenous levels of retinol and retinyl esters determined in female volunteers were in good accordance with published data.  相似文献   

17.
A rapid and sensitive high-performance thin-layer chromatographic (HPTLC) method was developed and validated for the quantitative estimation of boswellic acids in formulation containing Boswellia serrata extract (BSE) and 11-keto beta-boswellic acid in human plasma. Simple extraction method was used for isolation of boswellic acid from formulation sample and acidified plasma sample. The isolated samples were chromatographed on silica gel 60F(254)-TLC plates, developed using ternary-solvent system (hexane-chloroform-methanol, 5:5:0.5, v/v) and scanned at 260 nm. The linearity range for 11-KBA spiked in 1 ml of plasma was 29.15-145.75 ng with average recovery of 91.66%. The limit of detection and limit of quantification for 11-KBA in human plasma were found to be 8.75 ng/ml and 29.15 ng/ml. The developed method was successfully applied for the assay of market formulations containing BSE and to determine plasma level of 11-keto beta-boswellic acid in a clinical pilot study.  相似文献   

18.
A rapid and sensitive LC-MS-MS method for the determination of huperzine A in dog plasma using huperzine B as internal standard has been developed and validated. The analyte and internal standard were extracted from plasma using n-hexane-dichloromethane-2-propanol (300:150:15, v/v/v), chromatographed on a C(18) column (5 microm, 50 mm x 4.6 mm i.d.) with a mobile phase consisting of acetonitrile-methanol-10mM ammonium acetate (35:40:25, v/v/v), and detected using a tandem mass spectrometer with a TurboIonSpray ionization interface. The run time was only 2 min. The assay was linear over the concentration range 0.05-20 ng/ml and intra- and inter-day precision over this range were <5.3% with good accuracy. The limit of detection in plasma was 0.01 ng/ml. The method was successfully applied to define plasma concentration-time curves of huperzine A in dogs after the last dose of an intramuscular injection (10 microg/kg per day for 15 days) of a sustained-release formulation of huperzine A.  相似文献   

19.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

20.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to quantify griseofulvin in human plasma using propranolol hydrochloride as internal standard (IS). Samples were prepared using solid phase extraction and analysed without drying and reconstitution. The analytes were chromatographed on Hypersil, hypurity C18 reverse phase column under isocratic conditions using 0.05% formic acid in water:acetonitrile (30:70, v/v) as the mobile phase. Total chromatographic run time was 3.0 min. Quantitation was done on a triple quadrupole mass analyzer API-3000, equipped with turbo ion spray interface and operating in multiple reaction monitoring (MRM) mode to detect parent-->product ion transition for analyte and IS. The method was validated for sensitivity, matrix effect, accuracy and precision, linearity, recovery and stability studies. Linearity in plasma was observed over the concentration range 20-3000 ng/mL for griseofulvin. Lower limit of quantification (LLOQ) achieved was 20 ng/mL with precision (CV) less than 10% using 5 microL injection volume. The absolute recovery of analyte (87.36%) and IS (98.91%) from spiked plasma samples was consistent and reproducible. Inter-batch and intra-batch coefficients of variation across four validation runs (LLOQ, LQC, MQC and HQC) was less than 7.5%. The accuracy determined at these levels was within +/-4.2% in terms of relative error. The method was applied to a pilot bioequivalence study of 500 mg griseofulvin tablet in six healthy human subjects under fed condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号