共查询到20条相似文献,搜索用时 15 毫秒
1.
Causes of root growth retardation induced by ultraviolet-B irradiation of shoots in Barley seedlings
I. N. Ktitorova O. V. Skobeleva E. V. Kanash T. E. Bilova E. I. Sharova 《Russian Journal of Plant Physiology》2006,53(1):85-95
In barley seedlings (Hordeum vulgare L.) during two days after irradiation of shoots with UV-B (0.5 W/m2, 6 h), the rate of elongation of primary roots decreased 2–3 times compared to that in control plants. The modulus of elasticity of roots (ε) increased at most twofold in 12 h after the onset of irradiation; the hydraulic conductivity (L p) diminished by a factor of two in 12 h, and the root osmotic pressure gradually decreased by 0.08 MPa in 24 h. Changes in ε and L p were shown to be related to oxidative stress in growing roots, which was evidenced from the increase in H2O2 level up to 15-fold increase in 6 h and in activity of guaiacol peroxidase (3.5-fold in 12 h). After 48 h, the characteristics of oxidative metabolism and root characteristics ε and L p became identical in untreated and treated plants. On the third day, the rate of root growth in treated plants reached its initial value. It is concluded that the main causes of retardation of root growth under these conditions were as follows: the increase in cell wall rigidity related to formation of oxidative cross-links in the apoplast and the decrease in root osmotic pressure due to limited transport of assimilates from irradiated leaves. After the intensity of UV-B irradiation applied to shoots was enhanced (1.6 W/m2, 4 h), another physiological status of roots was observed on the 2nd day characterized by twofold increase in L p, tenfold decreased root elongation rate, and by a progressing increase of root diameter in growing roots. The comparison of root responses induced by irradiation of shoots with the root responses to sodium salicylate and ABA suggests that both agents might participate in the transmission of signals from irradiated leaves to roots. 相似文献
2.
3.
4.
5.
Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves 总被引:14,自引:0,他引:14
Barley (Hordeum vulgare L.) was grown with UV-B (280–320 nm) at levels simulating 25 nr 5% ozone depletion on the date of the summer solstice al 40°N latitude, with UV-A (320–400 nm), or with no supplemental irradiation. In plant growth chambers providing 300 μmol m?2 s?1 photosynthetically active radiation (PAR). UV-B-grown leaves elongated more slowly than controls but reached the same final length 1 day later. Leal specific fresh weight (mass leaf area?1) was significantly increased by UV-B after the 7th day of growth. IV-B did not significantly affect leaf area, fresh weight, dry weight, total chlorophylls, total carotenoids or photosynthetic quantum efficiency. CO2 assimilation was decreased by UV-B only at internal CO2 levels above 250 μl l?1. By the 8th day of growth, UV-B increased flavonoid (saponarin and lutonarin) accumulation in both the lower epidermis and the mesophyll: about 40% of the saponarin and 20% of the lutonarin were in the lower epidermis under all experimental conditions. Glasshouse conditions proved too variable for reproducible determination of growth and photosynthesis but were reliable for determining developmental changes in flavonoid (saponarin and lutonarin) accumulation and provided up to 800 μmol m?2 s?1 PAR. In the glasshouse UV-B-grown leaves had more flavonoids than controls al all stages from 5 to 30 days after planting: ca 509 more saponarin and 100% more lutonarin. Levels of soluble (vacuolar) ferulic acid esters were similar under all conditions on day 5. and on day 20 or later, but were significantly higher in UV-B-grown plants on days 10 and 15. UV-B decreased insoluble (cell-wall-bound) ferulic acid esters on a whole leaf basis but significantly increased this fraction in the lower epidermis. UV-A had no significant effects on growth, photosynthesis or ferulic acid, but it slightly increased flavonoid accumulation. The results are discussed in terms of secondary phenolics as a tissue-specific, developmentally regulated adaptive response to UV-B. 相似文献
6.
A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake 总被引:1,自引:0,他引:1
Gahoonia Tara S. Nielsen Niels Erik Joshi Priyavadan A. Jahoor Ahmed 《Plant and Soil》2001,235(2):211-219
This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed the lack of root hairs on mutant roots. Amplified Fragment Length Polymorphism (AFLP) analyses of the genomes of the mutant and Pallas supported that the brb mutant has its genetic background in Pallas. The segregation ratio of selfed F2 plants, resulting from mutant and Pallas outcross, was 1:3 (–root hairs:+root hairs), suggesting a monogenic recessive mode of inheritance.In rhizosphere studies, Pallas absorbed nearly two times more phosphorus (P) than the mutant. Most of available inorganic P in the root hair zone (0.8 mm) of Pallas was depleted, as indicated by the uniform P depletion profile near its roots. The acid phosphatase (Apase) activity near the roots of Pallas was higher and Pallas mobilised more organic P in the rhizosphere than the mutant. The higher Apase activity near Pallas roots also suggests a link between root hair formation and rhizosphere Apase activity. Hence, root hairs are important for increasing plant P uptake of inorganic as well as mobilisation of organic P in soils.Laboratory, pot and field studies showed that barley cultivars with longer root hairs (1.10 mm), extracted more P from rhizosphere soil, absorbed more P in low-P field (Olsen P=14 mg P kg–1 soil), and produced more shoot biomass than shorter root hair cultivars (0.63 mm). Especially in low-P soil, the differences in root hair length and P uptake among the cultivars were significantly larger. Based on the results, the perspectives of genetic analysis of root hairs and their importance in P uptake and field performance of cereals are discussed. 相似文献
7.
Hyun Ji Kang Yuri Oh Sihyeong Lee In Wang Ryu Kyunghoon Kim 《Bioscience, biotechnology, and biochemistry》2013,77(12):2018-2021
Ginsenoside Ro (Ro), an oleanolic acid-type ginsenoside, exhibited suppressive activities on reactive oxygen species (ROS) and matrix metalloproteinase-2 (MMP-2) elevation in UV-B-irradiated fibroblasts. Ro could overcome the reduction of the total glutathione (GSH) contents in UV-B-irradiated fibroblasts. Ro could not interfere with cell viabilities in UV-B-irradiated fibroblasts. Collectively, Ro possesses a potential skin anti-photoaging property against UV-B radiation in fibroblasts. 相似文献
8.
Quantification of root dynamics by destructive methods is confounded by high coefficients of variation and loss of fine roots. The minirhizotron technique is non-destructive and allows for sequential root observations to be made at the same depth in situ. Observations can be stored on video tape which facilitates data handling and computer-aided image processing. A color composite technique using digital image analyses was adapted in this study to detect barley root dynamics from sequential minirhizotron images. Plants were grown in the greenhouse in boxes (80 × 80 × 75 cm) containing soil from a surface horizon of a Typic Cryoboroll. A minirhizotron was installed at a 45°C angle in each box. Roots intersecting the minirhizotron were observed and video-recorded at tillering, stem extension, heading, dough and ripening growth stages. The images from a particular depth were digitized from the analog video then registered to each other. Discrimination of roots from the soil matrix gave quantitative estimates of root appearance and disappearance. Changes in root appearance and disappearance were detected by assigning a separate primary color (red, green, blue) to selected growth stages, then overlaying the images to create red-green and red-green-blue color composites. The resulting composites allowed for a visual interpretation and quantification of barley root dynamics in situ. 相似文献
9.
Triacontanol (TRIA) treatment of plasma membrane-enriched vesicles from barley ( Hordeum vulgare L., cv. Conquest) roots resulted in stimulation of membrane-associated, divalent cation-dependent ATPase activity (EC 3.6.1.3). The stimulation at physiologically active concentrations of TRIA (10−11 –10−9 M ) occurred only when the vesicles were treated with TRIA in the presence of calmodulin. Octacosanol, the C28 -analogue of TRIA, had no effect on divalent cation-dependent ATPase activity. Consistent with in vivo studies, simultaneous treatment of vesicles with weight equivalents of TRIA and octacosanol reduced the stimulation of ATPase activity. The effect of calmodulin on the stimulation of ATPase activity was diminished by calmidazolium, a specific inhibitor of calmodulin. Circular dichroism studies did not show a change in the α-helix content of calmodulin in the presence of TRIA. TRIA also had no apparent effect on soluble calcium-calmodulin 3',5'-cyclic nucleotide phosphodiesterase activity. Removal of excess TRIA from the medium after treatment still resulted in stimulation of divalent cation-dependent ATPase activity in the presence of calmodulin was comparable to treated vesicles from which excess TRIA had not been removed. These data further support the contention that TRIA affects membrane structure and function. 相似文献
10.
Primary roots of intact maize plants (Zea mays L.) grown for several days in nutrient solutions containing 100 mol m−3 NaCl and additional calcium, had relatively inhibited rates of elongation. Possible physical restraints underlying this salt induced inhibition were investigated. The inhibition did not involve reductions in osmotic potential gradients and turgor in the tip tissues responsible for root elongation growth. The apparent yield threshold pressure, which is related to capacity of cell walls to undergo loosening by stress relaxation, was estimated psychrometrically in excised root tips. Salinity increased yield threshold values. Comparative root extensibility values were obtained for intact plants by determining the initial (1 min) increase in root elongation rate induced by an 0.1 MPa osmotic jump. Comparative extensibility was significantly reduced in the salinized root tips. Salinity did not reduce capacities for water efflux and associated elastic contraction in root tip tissues of intact plants exposed to hypertonic mannitol. We conclude that cell wall hardening in the elongating root tips is an important component of root growth inhibition induced by long-term salinization. 相似文献
11.
Abstract Changes in the net uptake rate of K+ and in the average tissue concentration of K+ were measured over 14 d in response to changes in root temperature with oilseed rape (Brassica napus L. cv. Bien venu) and barley (Hordeum vulgare L. cv. Atem). Plants were grown in flowing nutrient solutions containing 2.5 mmol m?3 K+ and were acclimatized over 49 d (rape) or 28 d (barley) to low root temperature (5°C) prior to steady–state treatments at root temperatures between 3 °C and 25 °C, with common air temperature. Uptake of K+ was monitored continuously over 14 d and nitrogen was supplied as NH4++ NO?3 or NH+4 or NO?3. Unit absorption rates of K+ increased with time and with root temperature up to Day 4 or 5 following the change in root temperature. Thereafter they usually approached steady-state, with Q10? 2.0 between 7 °C and 17°C, although rates became similar between 7 °C and 13°C. Uptake of K+ by rape plants was invariably greater under NO?3 nutrition compared with NH+4. The percentage K+ in the plant dry matter increased with temperature from 2% at 3 °C to 4% at 25 °C in rape, but there was less effect of temperature on the average concentrations of K+ in the plant fresh weight or plant water content. Concentrations of K+ in the leaf water fraction of rape plants decreased with increasing root temperature, but in barley they increased with increasing root temperature. Concentrations of K+ in the root water fraction were relatively stable with respect to root temperature. The results are discussed in terms of compensatory changes in K+ uptake following a change in root temperature and the relationships between growth, shoot: root ratio and K+ composition of the plant. 相似文献
12.
13.
This study reports on investigations into the effect of long-term growth at reduced temperatures on cell elongation and cell division in the wild type and a temperature-insensitive ( slender ) mutant of barley. Plants were grown under two temperature regimes (20 and 5 °C) and the mitotic index, cell doubling time and cell lengths over the division and elongation zone were monitored at several stages of development in the second leaf. Leaf length and leaf growth rates were characteristically greater in the slender mutant than in the wild type and this was greatly exaggerated by growth at low temperature. Cell length and the length of the division zone were also greater in the slender mutant than in the wild type, and growing the plants at reduced temperature (5 °C) shortened cell lengths only in the wild type. The slender mutant had a higher mitotic index than the wild type, although in neither genotype was change in the mitotic index observed following growth at reduced temperature. Cell doubling time, on the other hand, was reduced by growth at reduced temperature in the wild type but not in the slender mutant. Thus, the data suggest very different growth responses to low temperature in the two genotypes. The results are discussed in terms of the ability of plants to sense their environment and optimize their metabolism for future growth. 相似文献
14.
Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.) 总被引:6,自引:0,他引:6
H. Kisaka M. Kisaka A. Kanno T. Kameya 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1997,94(2):221-226
In order to obtain plants that were somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.), we fused protoplasts that had been isolated from 6-month-old suspension cultures of carrot cells with protoplasts isolated
from barley mesophyll by electrofusion. After culture for 1 month at 25°C , the cells were cultured for 5 weeks at 4°C , and
were then returned to 25°C for culture on a shoot-inducing medium. Three plants (nos. 1, 2 and 3) were regenerated from the
cells. The morphology of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis
of callus cultures induced from these plants indicated that most of the cells had about 24 chromosomes, fewer than the sum
of the numbers of parent chromosomes which was 32. Southern hybridization analysis with fragments of the rgp1 gene used as probe showed that the regenerated plants contained both barley and carrot genomic DNA. Chloroplast (ct) and
mitochondrial (mt) DNAs were also analyzed with several probes. The ctDNA of the regenerated plants yielded hybridization
bands specific for both barley and carrot when one fragment of rice ctDNA was used as probe. Furthermore, the regenerated
plants yielded a barley specific band and a novel band with another fragment of rice ct DNA as a probe. One of the regenerated
plants (no. 1) yielded a novel pattern of hybridized bands of mt DNA (with an atp6 probe) that was not detected with either of the parents. These results indicated that the regenerated plants were somatic
hybrids of barley and carrot and that recombination of both the chloroplast genomes and the mitochondrial genomes might have
occurred.
Received: 28 May 1996 / Accepted: 2 August 1996 相似文献
15.
16.
Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of plants, in accordance with their sessile lifestyle. This is linked to the balance between plasticity and rigidity of cells in the root apex, and thus is coordinated with the control of cell wall properties. However, mechanisms underlying such harmonization are not well understood, in particular under stressful conditions. We have recently demonstrated that RICE SALT SENSITIVE3 (RSS3), a nuclear factor that mediates restrictive expression of jasmonate-induced genes, plays an important role in root elongation under saline conditions. In this study, we report that loss-of-function of RSS3 results in changes in cell wall properties such as lignin deposition and sensitivity to a cellulose synthase inhibitor, concomitant with altered expression of genes involved in cell wall metabolism. Based on these and previous phenotypic observations of the rss3 mutant, we propose that RSS3 plays a role in the coordinated control of root elongation and cell wall plasticity in the root apex. 相似文献
17.
18.
Schjørring, J. K. and Jensén, P. 1984. Phosphorus nutrition of barley, buckwheat and rape seedlings. I. Influence of seed-borne P and external P levels on growth, P content and 32P/31P-fractionation in shoots and roots. Seedlings of barly (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus ev. Line) were grown at 8 or 10 different external P levels in the range 0-2000 μM. Apart from P, the nutrient solutions were complete. In some experiments with barley and rape, 32P-labelled phosphate was used. Root fresh weights of buckwheat and rape decreased when the external P supply exceeded the level required for maximal root development. In all three species, the roots constituted a decreasing proportion of the total plant fresh weight as the external P level increased. The shoot/root fresh weight ratio increased linearly with the P concentration of the roots. The ratio between the P concentration in shoots and roots increased with the P status of the seedlings grown at low to intermediate external P levels, but decreased at higher P levels. The proportion of total seedling-P held in roots consequently reached a minimum value and thereafter increased as the P status of the seedlings increased. This indicates that some control mechanism counteracted the accumulation of harmful P levels in the shoots. 32P-Phosphate uptake by seedlings of barley and rape grown in solutions with 2 μM P overestimated the actual net phosphorus uptake by a factor of 6 to 7, indicating a marked fractionation of 32P and 31P. For seedlings grown in solutions with 25 μM P (barley) or 50 μM (rape) no fractionation occurred. The relative excess of 32P in high P seedlings accumulated in the roots. It is suggested that the fracionation was caused by efflux of low specific activity phosphorus and by diffusion of free phosphate ions across the plasmalemma of the root cells in response to a difference in the concentration gradient between the two P isotopes. 相似文献
19.
A. Mozafar 《Plant and Soil》1991,130(1-2):105-108
Contact between roots and Fe-containing solid substrate is known to facilitate acquisition of iron by plants, but the actual mechanism of this contact effect is not yet clear. This study was undertaken to evaluate the effect of root contact with ballotini (glass spheres) on exudation of substances capable of reducing or chelating insoluble Fe(III) compounds by the roots of barley (Hordeum vulgare L. cv. Europa) seedlings. Seedlings with roots encountering mechanical impedance (i.e., in contact with ballotini) produced more lateral roots than the seedlings with unimpeded (i.e., freely suspended) roots in the nutrient solution. Nutrient solution bathing roots in contact with ballotini showed higher concentrations of Fe(III)-chelating (83% on day 7) and Fe(III)-reducing (107% on day 12) substances than solutions bathing unimpeded roots. The pH of all solutions rose continuously during the course of the experiment but was always lower (by a nonsignificant degree) in the solutions with roots in contact with ballotini than in those with unimpeded roots. The data indicate that under natural soil conditions the amount of Fe-chelating and Fe-reducing root exudates may be higher than is usually measured from roots of terrestrial plants artificially suspended in nutrient solution. 相似文献
20.
Cesium chloride treatment of illuminated barley leaves leads to accumulation of uroporphyrinogen which is subsequently either
oxidised to uroporphyrin in continuous light or converted to protochlorophyllide in darkness [Shalygo et al. (1998) J Photochem
Photobiol 42: 151–158]. We were interested to elucidate the differences in the phototoxicity of uroporphyrin and protochlorophyllide
in the CsCI-treated leaves. Photosensitization and the induction of oxidative stress responses in the barley leaves occurred
much faster upon protochlorophyllide than upon uroporphyrin accumulation. We compared the time resolved changes in the pool
sizes of low molecular weight antioxidants, such as ascorbate, glutathione and tocopherol, as well as of the enzymatic activities
of catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase in illuminated barley leaves which accumulated
uroporphyrin or protochlorophyllide. A rapid loss of the antioxidant levels correlated with the accumulation of reactive oxygen
species. The contents of low molecular weight antioxidants and the activities of most of the antioxidative enzymes declined
more rapidly in the presence of protochlorophyllide than of uroporphyrin. Due to its high lipophilicity, free protochlorophyllide
is associated with biomembranes. Therefore, it is assumed that it exerts its phototoxic effects to membranes more rapidly
than uroporphyrin.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献