首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Current models for physiological components and a posture control experiment conducted with three normal subjects form the basis for a model which seeks to describe quantitatively the control of body sway when only vestibular motion cues are used. Emphasis is placed on delineating the relative functional roles of the linear and the angular acceleration sensors and on modeling the functional interface between these sensors and the initiation of compensatory responses at the ankle joint.The model predicts the form of the postural response to a small sway disturbance; including initial detection of sway, characteristics of the transient correction, and maintenance of stability. The model suggests that postural stability requires a short time constant integration of semicircular canal output. Separation of semicircular canal and utricular otolith function into sway motion detector and static reference sensors respectively is demonstrated.This work was supported by NASA under Grant NGR-22-009-156.  相似文献   

3.
This article presents a biologically-inspired framework for humanoid postural control. It complies with the main features of human postural control that are extracted from recent studies. In this article, the human body is abstracted as a single-inverted pendulum jointed with a foot that rests freely on a supporting surface. In particular, disturbances affecting posture are addressed and accommodated within the proposed framework. Among these are external forces and motion of support surface on which the body stands. The main components of this framework are: 1. A state-feedback mechanism for stabilizing the unstable dynamics of the body. 2. A tracking loop for robustly achieving desired voluntary orientations. 3. A feed-forward control primarily for improving the response to voluntary motions. 4. A stand-alone vestibular sensory fusion algorithm for estimating body orientation. 5. An external-disturbance estimator and a corresponding compensation for minimizing the effect of external disturbances. These components are interconnected in a way that qualifies this framework to modularly address the multi-segment body postural control problem. Although no postural stability measure is explicitly incorporated, experiments run on a special-purpose humanoid demonstrate the stability and the performance merits of the presented framework.  相似文献   

4.
Many of our motor activities require stabilization against external disturbances. This especially applies to biped stance since it is inherently unstable. Disturbance compensation is mainly reactive, depending on sensory inputs and real-time sensor fusion. In humans, the vestibular system plays a major role. When there is no visual space reference, vestibular-loss clearly impairs stance stability. Most humanoid robots do not use a vestibular system, but stabilize upright body posture by means of center of pressure (COP) control. We here suggest using in addition a vestibular sensor and present a biologically inspired vestibular sensor along with a human-inspired stance control mechanism. We proceed in two steps. First, in an introductory review part, we report on relevant human sensors and their role in stance control, focusing on own models of transmitter fusion in the vestibular sensor and sensor fusion in stance control. In a second, experimental part, the models are used to construct an artificial vestibular system and to embed it into the stance control of a humanoid. The robot’s performance is investigated using tilts of the support surface. The results are compared to those of humans. Functional significance of the vestibular sensor is highlighted by comparing vestibular-able with vestibular-loss states in robot and humans. We show that a kinematic body-space sensory feedback (vestibular) is advantageous over a kinetic one (force cues) for dynamic body-space balancing. Our embodiment of human sensorimotor control principles into a robot is more than just bionics. It inspired our biological work (neurorobotics: ‘learning by building’, proof of principle, and more). We envisage a future clinical use in the form of hardware-in-the-loop simulations of neurological symptoms for improving diagnosis and therapy and designing medical assistive devices.  相似文献   

5.
 A phenomenological model of the mechanism of stabilization of the body orientation during locomotion (dorsal side up) in the lamprey is presented. The mathematical modeling is based on experimental results obtained during investigations of postural control in lampreys using a combined in vivo and robotics approach. The dynamics of the model agree qualitatively with the experimental data. It is shown by computer simulations that postural correction commands from reticulospinal neurons provide information sufficient to stabilize body orientation in the lamprey. The model is based on differences between the effects exerted by the vestibular apparatus on the left and the right side. Received: 16 February 2000 / Accepted in revised form: 29 September 2000  相似文献   

6.
In recent years, studies of nervous mechanisms for the control of body posture have been performed on animal models of different complexity - cat, rabbit, lamprey and the mollusc Clione. These studies have greatly expanded our knowledge of how the control system operates, how the system can change the stabilized body orientation and how the postural functions are distributed within different parts of the CNS. For simpler animal models, the postural network has been analyzed in considerable detail and main cell types and their interactions have been identified.  相似文献   

7.
To examine the muscle synergies of multi-directional postural control, we calculated the target-directed variance fraction (η) and net action direction of each muscle using the electromyogram-weighted averaging (EWA) method. Subjects stood barefoot on a force platform and maintained their posture by producing a center of pressure (COP) in twelve target directions. Surface electromyograms were recorded from 6 right-sided muscles: tibialis anterior (TA), soleus (SOL), lateral gastrocnemius (LG), medial gastrocnemius (MG), fibularis longus (FL), and gluteus medius (GM). η was calculated from COP with duration of 20-s, during which the COP was relatively constant. The EWA method was applied to the EMG and the two COP components to estimate the net action direction of each muscle. The results showed that η values in all directions did not cross the 0.8 threshold. This suggests that human postural control is achieved by synergistic co-activation. The EWA revealed that the net action directions of TA, SOL, LG, MG, and GM were 277.6°, 71.1°, 87.7°, 94.0°, and 2.2°, respectively. This suggests that postural maintenance by muscle synergy can be attributed to the relevant muscles having various action directions. These results demonstrate that muscle synergies can be investigated using COP fluctuations.  相似文献   

8.
Objective:To establish pediatric age- and sex-specific references for measuring postural control with a mechanography plate in a single centre, prospective, normative data study.Methods:739 children and adolescents (396 male/343 female) aged 4 to 17 years were studied. Each participant completed the following test sequence three times: Romberg, semi-tandem, tandem, each with eyes open and closed, and a one-leg stand with eyes open, and a single two-legged jump. Normal ranges were determined based on percentile calculations using the LMS method. Results from the two-legged jump were compared to a reference population the single two-legged jump (s2LJ) assessment in 2013.Results:38 different equilibrium parameters calculated were analysed. Of all parameters Path Length, vCoFmean, Equilibrium Score and Sway Angle showed a low variation within the same age group but high dependency on age and were thus chosen for automated balance assessment.Conclusion:Standard values of postural control in healthy children derived from automated balance testing using a mechanography plate were successfully acquired and a subset of parameters for automated balance assessment identified.  相似文献   

9.
According to the mirror neurons data there exist areas in the premotor cortex that are activated both during action perception and action execution. It was hypothesized that posture maintenance would be impaired by simultaneous action perception in concordance with cognitive dissonance theory. A test was conducted during which 23 neurologically normal humans were to maintain their posture erect on the forceplate and to listen to the action-related sentences. Tests of differences and Friedman analysis of variance proved that listening to sentences that describe different actions and movements in the first and the third person impairs postural control in comparison with listening to sentences that describe objects of nature and everyday life.  相似文献   

10.
11.
The postural system maintains a specific body orientation and equilibrium during standing and during locomotion in the presence of many destabilizing factors (external and internal). Numerous studies in humans have revealed essential features of the functional organization of this system. Recent studies on different animal models have significantly supplemented human studies. They have greatly expanded our knowledge of how the control system operates, how the postural functions are distributed within different parts of CNS, and how these parts interact with each other to produce postural corrections and adjustments. This review outlines recent advances in the studies of postural control in quadrupeds, with special attention given the neuronal postural mechanisms.  相似文献   

12.
13.
Recent investigations in invertebrate neurobiology have opened up new lines of research into the basic roles of behavioral, neurochemical, and physiological effects in complex behavioral phenomena, such as aggression and drug-sensitive reward. This review summarizes a body of quantitative work, which identifies biogenic amines as a pharmacological substrate for motivated behaviors in the crayfish, Orconectes rusticus. Specifically, this paper details progress that has (1) explored links between serotonin and an individuals aggressive state, and (2) demonstrated the existence of crayfish reward systems that are sensitive to human drugs of abuse, such as psychostimulants. First, we summarize a set of experimental approaches that explore aggression in crayfish and the significance of aminergic systems in its control. Agonistic behavior in crustaceans can be characterized within a quantitative framework; different types of behavioral plasticity in aggressive behavior are in need of physiological explanation, and pharmacological intervention involving serotonergic systems bring about characteristic changes in behavior. A second set of experiments demonstrates that psychostimulants (cocaine and D-amphetamine) serve as rewards when an intra-circulatory infusion is coupled to a distinct visual environment. Work in novel model systems such as crayfish constitutes a useful comparative approach to the study of aggression and drug addiction.  相似文献   

14.
Our purpose was to identify the effect of diminished plantar cutaneous sensation on time-to-boundary (TTB) measures of postural control during double and single limb quiet standing. Thirty-two healthy young adults underwent 10 min of ice immersion of the plantar aspect of the feet prior to balance testing. On a different day, the subjects did not receive this intervention prior to testing. A 2 × 2 vision (eyes open, eyes closed) by sensation (control, hypoesthesia) repeated measures design was used to analyze the TTB measures. In double limb stance, there were significant interactions between sensation and vision for the absolute TTB minimum and the mean of TTB minima in the anteroposterior (AP) direction. There was a significant increase in both measures after sensation was diminished with eyes closed compared to the control, but not with eyes open. In single limb stance, the TTB absolute minimum, the mean of TTB minima in the AP direction, and the standard deviation of TTB minima significantly increased with hypoesthesia regardless of vision. No significant differences were found in the medial–lateral (ML) direction for any of the TTB measures in double or single limb stance. Sensory information from the plantar cutaneous receptors appears to be most important in the maintenance of AP postural control.  相似文献   

15.
During postural responses to perturbations, horizontal plane forces generated by the cat hindlimb are stereotypically directed either towards or away from the animal's center of mass, independent of perturbation direction. We used a static, three-dimensional musculoskeletal model of the hindlimb to investigate possible biomechanical determinants of this "force constraint strategy." We hypothesized that directions in which the hindlimb can produce large forces are preferentially used in postural control. We computed feasible force sets (FFSs) based on hindlimb configurations of three cats during postural equilibrium tasks and compared them to horizontal plane postural force directions. The grand mean FFS was bimodal, with maxima near the posterior-anterior axis (-86+/-8 degrees and 71+/-4 degrees ), and minima near the medial-lateral axis (177+/-8 degrees and 8+/-8 degrees ). Experimental postural force directions clustered near both maxima; there were no medial postural forces near the absolute minimum. However, the medians of the anterior and posterior postural force direction histograms in the right hindlimb were rotated counter-clockwise from the FFS maxima (p<0.05; Wilcoxon signed-rank test). Because the posterior-anterior alignment of the FFS is consistent with a hindlimb structure optimized for locomotion, we conclude that the biomechanical capabilities of the hindlimb strongly influence, but do not uniquely determine the force directions observed in the force constraint strategy. Forces used in postural control may reflect a balance between a neural preference for using forces in the directions of large feasible forces and other criteria, such as the stabilization of the center of mass, and muscular coordination strategies.  相似文献   

16.
Sympathetic outflow increases during head-up tilt (HUT) to stabilize blood pressure in the presence of decreases in venous return and stroke volume (SV). Otherwise, orthostatic hypotension would develop. Gender differences in orthostatic tolerance have been noted but the mechanisms are still uncertain. More recently, Waters et al. reported in a limited sample, greater susceptibility of women to demonstrate orthostatic intolerance following space flight. Therefore, it is important to understand gender differences in reflex blood pressure regulation. Recently, we reported smaller increments in muscle sympathetic nerve activity (MSNA) in healthy women during graded HUT and a non-baroreflex cold pressor test. The purpose of this report is to examine the hypothesis that gender differences in blood pressure control during HUT are related to important variations in MSNA discharge patterns.  相似文献   

17.
Our purpose was to identify the effect of diminished plantar cutaneous sensation on time-to-boundary (TTB) measures of postural control during double and single limb quiet standing. Thirty-two healthy young adults underwent 10 min of ice immersion of the plantar aspect of the feet prior to balance testing. On a different day, the subjects did not receive this intervention prior to testing. A 2 x 2 vision (eyes open, eyes closed) by sensation (control, hypoesthesia) repeated measures design was used to analyze the TTB measures. In double limb stance, there were significant interactions between sensation and vision for the absolute TTB minimum and the mean of TTB minima in the anteroposterior (AP) direction. There was a significant increase in both measures after sensation was diminished with eyes closed compared to the control, but not with eyes open. In single limb stance, the TTB absolute minimum, the mean of TTB minima in the AP direction, and the standard deviation of TTB minima significantly increased with hypoesthesia regardless of vision. No significant differences were found in the medial-lateral (ML) direction for any of the TTB measures in double or single limb stance. Sensory information from the plantar cutaneous receptors appears to be most important in the maintenance of AP postural control.  相似文献   

18.
Research that evaluated both static and dynamic stability was performed, to clarify the impact of excessive body weight on postural control. The spontaneous center of foot pressure (CP) motion during quiet stance and a range of forward voluntary CP displacements were studied in 100 obese, and 33 lean women. Characteristics of postural sway were acquired while the subjects were standing quiet on a force plate with eyes open (EO) and with eyes closed (EC). Their anterior range of CP voluntary displacements was assessed upon a range of maximal whole body leanings which were directed forward. A substantial reduction of postural sway was observed in all patients which had increased body weight. Main postural sway parameters i.e., the total path length as well as its directional components were negatively correlated with the body mass and body mass index (BMI). The range of a whole body voluntary forward leaning, did not exhibit any significant change in patients with an obesity grade of I and II. Such a deficit was, however, found in subjects with a body mass index above 40. In conclusion, the increased body weight imposed new biomechanical constraints, that resulted in functional adaptation of the control of the erect posture. This functional adaptation was characterized by a reduced postural sway associated with a substantial reduction of the dynamic stability range in subjects with BMI>40.  相似文献   

19.
BackgroundDue to menstruation and restrictive dietary practices, women are at a particular risk of iron deficiency anemia (IDA). This hematologic manifestation could impair postural control as it induces fatigue, muscle weakness, cognitive and neurological functions alteration.AimThis study aimed to investigate IDA effects on postural control in young women in comparison to healthy counterparts.Material and methodsTwenty-four young women with IDA and twenty-four controls participated in this study. Center of pressure (CoP) excursions, in the bipedal and semi-tandem postures on the firm and foam surfaces in the eyes opened (EO) and closed (EC), were recorded, and Romberg index was calculated to evaluate postural control. Besides physical performance, attentional capacity, fatigue, and heart and respiratory rates were assessed.ResultsYoung women with IDA had significantly higher CoP velocity (CoPv) values in the bipedal posture in both vision and surface conditions (EO [firm: P < 0.001 and foam: P < 0.01]; EC: P < 0.001), as well as in the semi-tandem posture (EO [firm: P < 0.01 and foam: P < 0.001]; EC: P < 0.001) compared to controls indicating that they had worse postural control than their peers. In addition, values of the respiratory rate (P < 0.001), attentional capacity (P < 0.001), physical performance (P < 0.001), fatigue (P < 0.001), and Romberg index on the foam surface in both postures (P < 0.05) were significantly higher in young women with IDA compared to controls.ConclusionsPhysical performance, fatigue, tachypnea and attentional capacity resulting from IDA may explain postural control disorder in young women.  相似文献   

20.
Matheron E  Kapoula Z 《PloS one》2011,6(3):e18110
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号