首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物硅营养的研究进展   总被引:27,自引:1,他引:26  
阐述了植物吸收硅的机理、硅与其它营养元素的关系及其对非胁迫和胁迫条件下植物生长发育的有益作用 .植物吸收硅的机制目前尚不是很清楚 ,不同植物吸收硅的方式不同 .硅可影响植物中其它营养元素的含量 .在非胁迫条件下 ,硅可促进植物的生长 ;硅也参与了植物抗病、抗虫等生物胁迫 ,以及抗金属毒害、盐害、温度胁迫、干旱、抗倒伏等非生物胁迫的反应 .目前 ,应从多种植物上深入研究硅的吸收方式与机理 ;同时 ,应该改变硅在细胞壁的沉积仅仅起增强组织机械强度作用的观点 ,而应从生理代谢调控的角度进行硅作用机制的研究 ,为生产实践中硅肥的应用奠定理论基础  相似文献   

2.
植物的硅素营养研究综述   总被引:2,自引:0,他引:2  
邢雪荣  张蕾 《植物学报》1998,15(2):33-40
本文阐述了硅在植物中的形态、分布、吸收、积累、生理作用及其与其它元素的关系。研究表明:1.硅主要以二氧化硅胶(SiO2.nH2O)的无机物形态存在于植物表皮细胞和细胞壁。植物体内硅的含量在不同物种间差异很大。根据硅的含量,可将一般栽培植物分为三种类群;同时根据植物硅钙摩尔比值可将植物分为喜硅植物和非喜硅植物。硅在植物各部分分布不均匀,并且随着植株的生长发育,植株中的硅含量不断变化。植物中硅的积累受环境中多种因素的影响。2.植物主要以单硅酸形态吸收硅,不同植物吸收硅的能力不同。水稻具有主动吸硅能力,其吸收过程受体内代谢活动影响<请合法使用软件>其它大多数植物主要以被动方式吸收硅,但不排除具有选择性吸收硅的可能性。3.硅对植物的生长发育产生影响。硅是一些植物(如禾本科植物、甜菜、木贼属植物及某些硅藻)的必需元素。硅对其它很多植物具有有益作用。硅对植物的作用主要表现在对形态结构、生理过程和抗逆能力三方面的影响 上。在去硅条件下,多种植物表现出缺硅症状。4.硅对植物吸收利用对其它营养元素产生影响。硅对不同元素的影响方式和程度不同,同时随着植物的生长发育,对某种元素的作用常发生变化。  相似文献   

3.
Applying silicon in the form of metasilicic acid (H4SiO3) or silicic acid (H4SiO3) to Bradyrhizobium -infected, hydroponically grown cowpea seedlings resulted in a significant ( P 0.05) increase in the number of nodules, nodule dry matter, and nitrogen fixed on a per plant basis. Total dry matter of plants increased with silicon supply, and the differences were significant ( P 0.05) at the higher silicon concentrations. Cowpea plants cultured in sand were also assessed for their response to silicic acid. Nodule number and nodule mass increased with silicon supply to sand cultured plants, though nitrogen fixation was unaltered. Although silicon is not essential for growth of cowpea, it is important for nodule formation and nodule functioning in hydroponically grown plants. Consequently, data collected and conclusions drawn from earlier glasshouse experiments, which have excluded silicon from nutrient solutions, may be flawed. Future studies on nodulation and nitrogen fixation using legumes in liquid culture must therefore include silicon as a nutrient element.  相似文献   

4.
Is plant ecology more siliceous than we realise?   总被引:1,自引:0,他引:1  
Although silicon occurs in all plants, it is an element that is largely overlooked by many plant ecologists and most plant-related research on silicon comes from agronomy, archaeology, palaeontology and biogeochemistry. Plant silicon has many functions, acting biochemically as silicic acid and physically as amorphous silica. It contributes to cell and plant strength and enables plants to respond adaptively to environmental stresses. Consequently, plant silicon can increase plant fitness in many fundamental aspects of ecology, including plant-herbivore interactions, light interception, pathogen resistance and alleviation of abiotic stresses. Here, we provide an ecological perspective to research outcomes from diverse disciplines, showing that silicon is an important element in plant ecology that is worthy of greater attention.  相似文献   

5.
Physiological traits for crop yield improvement in low N and P environments   总被引:9,自引:1,他引:8  
Nitrogen and phosphorus are recognized as essential elements in crop production, but the full extent of the requirement for these elements in the physiological processes leading to crop growth seems not to be always fully appreciated. Virtually all the biochemical compounds in plants that support development and growth contain N and/or P. Deficiencies in either element lead to a lost ability for plant growth such that there is a quantitative relationship between crop yield and accumulation by plants of each of these elements. Few options appear to exist to greatly diminish the requirement for either element in crop growth and the formation of seed yield. Consequently, crop yields cannot be increased without increased acquisition of N and P by plants. If the soil environment does not offer these elements, then crop yield will necessarily be restricted. While little opportunity exists to increase N recovery under low nutrient environments, several options can be investigated for increasing P accumulation by the crop. Ultimately, however, the rigid limitation on yields of inadequate N means that without external supplies of N for the cropping system, biological fixation of N must be enhanced to increase N input. In particular, it appears that considerable research needs to be focused on whole-plant processes in legumes that lead to enhanced symbiotic N fixation. A critical aspect of increased legume production will be improved management of P to allow legumes to achieve high N fixation rates and yields.  相似文献   

6.
Based on results from water culture experiments with tomato and cucumber plants where severe leaf chlorosis and depression in flower and fruit formation occurred without silicon (Si) supply, Miyake and Takahashi (1978; 1983) concluded that Si is an essential mineral element for these two plant species. Using the same nutrient solution which is high in phosphorus (P) but low in zinc (Zn) we could confirm these results. Severe chlorosis occurred in cucumber when Si was omitted, and the addition of Si prevented these visual symptoms. Simultaneously the concentrations of P drastically decreased in the leaves and the proportions of water extractable Zn increased. Normal growth and absence of chlorosis were, however, also obtained without the addition of Si when either the external concentration of P was lowered or of Zn was increased. Short-term experiments revealed that Si has no direct effect on uptake or translocation of P to the shoot. According to these results, the experimental evidences so far are insufficient for the classification of Si as an essential mineral element for cucumber. Instead, Si may act as beneficial element under conditions of nutrient imbalances, for example, in P and Zn supply and corresponding P-induced Zn deficiency. The mechanism by which Si increases the physiological availability of Zn in leaf tissue is not yet clear.  相似文献   

7.
Plants are able to discriminately allocate greater biomass to organs that grow under higher resource levels. Recent evidence demonstrates that split-root plants also discriminately allocate more resources to roots that grow under dynamically improving nutrient levels, even when their other roots grow in richer patches. Here, we further tested whether, besides their responsiveness to the direction of resource gradients, plants are also sensitive to the steepness of environmental trajectories. Split-root Pisum sativum plants were grown so that one of their roots developed under constantly-high nutrient levels and the other root was subjected to dynamically improving nutrient levels of variable steepness. As expected, plants usually allocated a greater proportion of their biomass to roots that developed under constantly high resource availability; however, when given a choice, they allocated greater biomass to roots that initially experienced relatively low but steeply improving nutrient availabilities than to roots that developed under continuously-high nutrient availability. Such discrimination was not observed when the roots in the poor patch experienced only gentler improvements in nutrient availability. The results are compatible with the notion that responsiveness to the direction and steepness of environmental gradients could assist annual plants to increase their performance by anticipating resource availabilities foreseeable before the end of the growing season. The results exemplify the ability of plants to integrate and utilize environmental information and execute adaptive behaviors which, until recently, were attributed only to animals with central nervous systems.Key words: anticipatory responses, environmental information, foraging, gradient perception, phenotypic plasticity, plant behavior, rate of change, resource gradients  相似文献   

8.
Some flax varieties respond to nutrient stress by modifying their genome and these modifications can be inherited through many generations. Also associated with these genomic changes are heritable phenotypic variations 1,2. The flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain inducible (under the control conditions), or become stably modified to either the large or small genotroph by growth under high or low nutrient conditions respectively. The lines resulting from the initial growth under each of these conditions appear to grow better when grown under the same conditions in subsequent generations, notably the Pl line grows best under the control treatment indicating that the plants growing under both the high and low nutrients are under stress. One of the genomic changes that are associated with the induction of heritable changes is the appearance of an insertion element (LIS-1) 3, 4 while the plants are growing under the nutrient stress. With respect to this insertion event, the flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain unchanged (under the control conditions), have the insertion appear in all the plants (under low nutrients) and have this transmitted to the next generation, or have the insertion (or parts of it) appear but not be transmitted through generations (under high nutrients) 4. The frequency of the appearance of this insertion indicates that it is under positive selection, which is also consistent with the growth response in subsequent generations. Leaves or meristems harvested at various stages of growth are used for DNA and RNA isolation. The RNA is used to identify variation in expression associated with the various growth environments and/or t he presence/absence of LIS-1. The isolated DNA is used to identify those plants in which the insertion has occurred.  相似文献   

9.
Root Nitrogen Acquisition and Assimilation   总被引:8,自引:0,他引:8  
Nitrogen (N) is the main mineral element in plant tissues and almost all of this nutrient is acquired from the soil by the roots. Nitrogen is available in many different forms in the soil, but the three most abundant forms are nitrate, ammonium and amino acids. The relative importance of these different soil N pools to a plant is difficult to measure and depends on many different environmental factors. Changes in the available amounts and imbalance in the supply of some N forms can even be toxic to plants and in extreme cases can lead to changes in the vegetation. However, the importance of this element for agriculture is reflected in the amounts of N-fertiliser applied to crops and this is a major cost (economic and environmental) for world agriculture. This review covers the molecular mechanisms that the plant uses for accessing these soil N pools and briefly includes consideration of the root N assimilatory pathways that exist in the plant. The soil forms of N that are used by plants depend on many factors, but a series of different transporter and assimilatory genes that can provide access to these pools have been identified. This information can now provide the molecular tools to identify the N sources accessed by a plant and the relative importance of these different pools.  相似文献   

10.
硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响   总被引:3,自引:0,他引:3  
陈伟  蔡昆争  陈基宁 《生态学报》2012,32(8):2620-2628
硅被认为是植物生长的有益元素,它能增强植物对非生物逆境和生物逆境胁迫的抗性。以抗旱性不同的一对水稻近等基因系w-14-和w-20为实验材料,采用盆栽实验,研究了干旱胁迫下硅处理对水稻生长性状、光合生理特性和矿质养分吸收的影响。结果表明,在正常水分条件下硅处理对水稻的生长及生理特性没有明显影响。干旱胁迫显著降低水稻植株的生长,叶绿素含量、叶绿素荧光参数Fv/Fm及Fv/F0值显著降低,光合作用受到明显抑制。加硅能提高干旱胁迫条件下水稻植株的生物量、水分利用效率、叶片叶绿素含量、净光合速率和蒸腾速率,而气孔导度和细胞间隙CO2浓度则下降。无论干旱与否,施硅后水稻的叶片硅含量均显著上升。两个水稻品系叶片的无机离子含量在干旱胁迫条件下均呈显著增加的趋势,而硅处理后材料w-14的叶片K+、Na+、Ca2+、Mg2+、Fe3+含量分别降低16.38%,24.50%,19.70%,21.52%,18.58%,w-20则分别降低11.64%,12.11%,16.06%,11.11%和19.15%,并使之回复到与对照更接近的水平。研究结果表明了硅提高水稻植株的抗旱性与光合作用的改善和矿质养分的调节有关。  相似文献   

11.
It has been known for some time that mangroves grow in the intertidal areas of desert countries where fresh water flows into the sea, but this phenomenon has not been understood. In Eritrea we observed that mangroves grow where infrequent rains flow into the Red Sea. We theorized that the fresh water must bring elements needed for plant growth that are absent in seawater. We compared the composition of seawater to that of Zarrouk’s algae medium. All the elements in algae medium are in sufficient quantity in seawater except for nitrogen, phosphorous and iron. If we supply these elements we can grow any plant that can grow in seawater. We have also begun planting plants that can grow in sea water in the Sahara desert with sea water irrigation and fertilization with nitrogen, phosphorus and iron. We believe this will be major step in reducing hunger and poverty in the world.  相似文献   

12.
Arbuscular mycorrhizas modify plant responses to soil zinc addition   总被引:1,自引:0,他引:1  
Zinc deficiency is one of the most commonly reported plant and human nutrient deficiencies worldwide. Conversely, Zn is also a common environmental contaminant, significantly reducing plant growth. These contrasting effects of Zn on plant growth and nutrition have been the focus of a considerable number of studies; however, most studies focus on plant responses to soil Zn concentration under either deficient or toxic concentrations, but not both. The formation of arbuscular mycorrhizas (AM) can increase plant Zn uptake under low soil Zn concentrations, and on the other hand, ‘protect’ plants against excessive Zn accumulation under high soil Zn conditions. Here we report the findings of an experiment in which we studied the response of AM formed by tomatoes under low, medium and high soil Zn conditions. To control for the formation of AM in this study we used a mycorrhiza defective tomato mutant and its mycorrhizal wildtype progenitor. While mycorrhizal colonization was not significantly impacted by soil Zn addition, the growth of plants and tissue Zn concentrations were. Together these data highlight the complex interactions between AM and Zn, and the utility of a genotypic approach for studying AM in this context.  相似文献   

13.
黄瓜中硅的生理功能及转运机制研究进展   总被引:1,自引:0,他引:1  
硅是植物体的重要组成部分,尽管硅尚未被列为植物生长的必需元素,但它在促进植物生长发育、提高作物对非生物逆境(干旱、盐分和重金属等)和生物逆境(病虫害)抗性等方面都具有重要作用。硅不仅能改善植株对矿质营养的吸收,提高作物产量和品质,而且能沉积在叶片及叶鞘表皮细胞,形成硅化细胞和角质双硅层结构,增强寄主植物细胞壁的机械强度和稳固性,从而增强植物对真菌侵入和扩展的抵御能力,提高植物对金属离子毒害的抗性、缓解盐胁迫、增强抗高低温和抗紫外线辐射等。本文在植物硅素营养和转运机制研究的基础上,对硅素营养在黄瓜中生长发育、抗逆和吸收转运机制等方面的效应做了相关综述,并展望了黄瓜中硅研究的未来发展。  相似文献   

14.
The decomposition rate of plant litter is important for the carbon cycle. Element stoichiometry and hardly degradable carbon compounds are main factors controlling the decomposition rate of plant litter. Recent research has linked these factors to silicon availability during plant growth, but no research focused on the effect of silicon on litter decomposition. We therefore conducted a batch experiment to assess the effect of silicon availability to plants on litter degradation, nutrient release and multi elemental stoichiometry. Experiments were conducted in the presence or absence of invertebrate shredders (Gammarus pulex). We show that nutrient content (affected by silicon availability during plant growth) has a strong impact on nutrient turnover, while DOC, N, and Mn were mainly controlled by invertebrate feeding. The carbon turnover during microbial litter decay was strongly influenced by the silicon availability during plant growth, with quicker potential C turnover of litter with higher silicon content. In both Si-rich and Si-poor litter, feeding by invertebrate shredders positively impacted turnover rates, but effects were less pronounced in Si-rich litter. It can be concluded that silicon availability in wetlands dominated by reed plays an important role in carbon sequestration, nutrient cycling, and remobilization during aquatic litter decay.  相似文献   

15.
干旱作为限制作物产量和品质的主要非生物胁迫之一,对全球社会、经济和生态造成巨大损失。在全球气候变化背景下,提高植物抗旱性的重要性日益突显。硅能够提高植物的抗旱性:外源硅的施用可以影响气孔导度,改变蒸腾速率,改善植物水分状况;通过调节气孔动力学、合成光合色素,促进光化学反应,从而改善光合作用;此外硅可通过渗透调节以平衡植物对矿质元素的吸收,以及调节抗氧化防御系统,减轻植物在干旱胁迫中的氧化损伤。总结了硅对干旱胁迫下植物水分利用、光合作用、矿质元素吸收、抗氧化系统、植物激素代谢等方面的作用及相关生理机制。建议未来从复合逆境胁迫、低硅积累植物等方面进一步揭示硅提高植物抗旱性的作用机制,从而为农林生态系统合理利用硅素来提高生产效率提供科学依据和理论基础。  相似文献   

16.
硅对干旱胁迫下玉米水分代谢的影响   总被引:2,自引:0,他引:2  
李清芳  马成仓  季必金 《生态学报》2009,29(8):4163-4168
利用盆栽试验研究了施硅(K2SiO3)对玉米植株水分代谢的影响.结果表明:施硅降低了干旱胁迫下玉米植株的气孔导度,降低了干旱胁迫早期到中期的蒸腾速率,保持了干旱胁迫后期较高的蒸腾速率,从而导致施硅玉米植株的叶片含水量和水势高于对照.由于植株的水分状况改善,施硅玉米植株生物量高于对照.硅增强玉米植株的抗旱性,而提高植株保水能力是硅提高抗旱性的重要原因.  相似文献   

17.
Environmental stresses affect plant growth and performance in nature. Host plant quality in turn affects herbivore performance and population dynamics. In view of these interactions, two major hypotheses were formulated. The plant stress hypothesis proposes that physiologically stressed plants become more susceptible to herbivores. The plant vigour hypothesis proposes that plants that grow vigorously are favourable to herbivores. Here we test the plant stress/plant vigour hypotheses for a leaf miner, Agromyza nigripes (Diptera; Agromyzidae), on the grass Holcus lanatus. We assessed larval performance (survival, developmental time, pupal mass) on grasses growing under different levels of nutrients (Hoagland solution) and drought stress, under controlled field and greenhouse conditions. Plant vigour and nutrient content were high on soils with an intermediate nutrient concentration and lower under drought stress and soil nutrient shortage and overdose. Larval performance was also highest on wet soils with intermediate nutrient supply. The results of the mining flies support the plant vigour hypothesis (density, survival and development better on vigorous plants). Herbivore performance is higher on leaves with a higher protein content.  相似文献   

18.
AIMS: We addressed the process of immigration of Bacillus thuringiensis from soil to leaves and its capacity to grow on bean diffusate medium (BDM), a medium designed to simulate the nutrient composition of the phylloplane. METHODS AND RESULTS: Two different B. thuringiensis strains were inoculated into soils, onto seeds or onto lower leaves of bean plants to determine if they were able to disperse to upper leaves under controlled conditions. While B. thuringiensis isolates were commonly recovered from leaves exposed to such inocula, populations were very low (<10 CFU cm(-2) of leaf). In addition, the number of cells of B. thuringiensis recovered decreased with increasing distance from the soil or from the inoculated leaves. Moreover, B. thuringiensis colonies did not grow well on BDM. CONCLUSIONS: This indicates that B. thuringiensis disperses poorly from the soil or the seed to the leaves or between leaves of the same plant under controlled conditions. Bacillus thuringiensis apparently has greater nutrient requirements than other bacterial species that are prominent inhabitants of the phylloplane. SIGNIFICANCE AND IMPACT OF THE STUDY: Finding the mechanisms that favour bacteria colonization on leaves will in turn help to improve the efficacy of biocontrol agents against the target pests.  相似文献   

19.
毛庆功  鲁显楷  陈浩  莫江明 《生态学报》2015,35(17):5884-5897
人类活动的加剧改变了陆地生态系统矿质元素(如氮、磷、钾等)循环的速度和方向,并且对生态系统的结构和功能也产生重要影响。如今,矿质元素输入量的改变及其产生的后续效应对陆地生态系统生物多样性的影响备受学者们的关注。从4个方面综述了全球氮沉降背景下主要矿质元素输入的改变对陆地植物多样性的影响及其机理:1)矿质营养元素限制的概念、确定方法以及与植物多样性的耦合关系;2)概述了氮、磷、钾等主要矿质元素输入对陆地植物多样性的影响:主要表现为负面效应;3)探讨了矿质元素输入影响植物多样性的可能机制,包括生态系统水平上的机制(如竞争排斥、酸化铝毒、物种入侵、同质性假说,间接诱导机制等)和植物个体水平上的机制(如元素失衡和环境敏感性增加等);4)根据目前研究现状,指出了已有研究的局限性,分析了未来可能的研究方向和重点。  相似文献   

20.
A plant’s ability to survive in a stressful environment is correlated with its nutritional status, which can be affected by cadmium (Cd) uptake. The present study evaluated the influence of Cd on the concentrations and distributions of nutrients in the roots and shoots of the Cd-hyperaccumulator Pfaffia glomerata (Sprengel) Pedersen. Plantlets were cultivated in nutrient solutions containing increasing Cd concentrations during 20 days under greenhouse conditions, and the concentrations of Cd and essential macro- (N, P, K, Ca, Mg and S) and micro- (Zn, Fe, Mn, Cu) elements in the roots and shoots were subsequently determined. Cd did not affect the plant biomass production. Cd accumulation was found to be higher in roots than in shoots, and influenced the distribution of macro and micro elements in those plants. Despite the high phytotoxicity of this element, our results indicated the existence of Cd-tolerance mechanisms in both nutrient uptake and distribution processes that enabled these plants to survive in Cd-contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号