首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The role of dopaminergic innervation on the postnatal developmental expression of D1 dopamine receptors was investigated. Bilateral destruction of dopa-mine-containing neurons was achieved by treating rats intracisternally with 6-hydroxydopamine (6-OHDA) on postnatal day 3, and rats were killed on day 21. To ensure effective reduction of D1 receptor activation by residual dopamine, a group of 6-OHDA-lesioned rats was given twice daily injections of the D1 receptor antagonist SCH-23390, from day 4 to 20. D1 dopamine receptor binding was assessed in the caudate—putamen, nucleus accumbens, and olfactory tubercle by quantitative autoradiographic analysis of [3H]SCH-23390 binding. In addition, the relative amount of D1A receptor mRNA was assessed by in situ hybridization of a 35S-labeled riboprobe. In the developing rats, neither the amount of [3H]SCH-23390 binding nor the amount of D1A receptor mRNA was altered by 6-OHDA lesioning followed by chronic treatment with SCH-23390. Thus, bilateral destruction of dopamine-containing neurons and treatment with SCH-23390 in neonatal rats did not interfere with the developmental expression of D1 receptors or alter the levels of mRNA that code for this receptor protein. Treatment of intact rats with SCH-23390 from postnatal day 4 to 20 also did not alter [3H]SCH-23390 binding or levels of D1 receptor mRNA. However, adult rats treated chronically with SCH-23390 exhibited increased [3H]SCH-23390 binding but did not show a significant change in D1 receptor mRNA levels.  相似文献   

2.
The recently alleged neurotoxicity of the D1 receptor agonist, SKF 38393, was investigated in rat striatum by measuring the enzymes acetylcholinesterase (AChE) and glutamate decarboxylase (GAD). First, unilateral intrastriatal microinjection of the excitotoxin kainic acid (2 micrograms in 1 microliter) was shown to evoke vigorous contraversive circling, followed 1 or 2 weeks later by profound decreases in striatal AChE (24 and 54%), GAD (51 and 75%), and protein (36 and 47%), as well as loss of GAD (45% at 2 weeks) in the ipsilateral substantia nigra. Similar striatal treatments with SKF 38393 (30 micrograms in 0.5-1 microliter), the related benzazepines SKF 82526 (D1 agonist, 30 micrograms in 1 microliter) and SCH 23390 (D1 antagonist, 5 micrograms in 1 microliter), or the phenanthridine D1 agonist CY 208-243 (5 micrograms in 1 microliter) failed to affect the rats' behaviour or their striatal levels of AChE, GAD, and protein. Intrastriatal SKF 38393 (30 micrograms in 0.5 microliter) also had no influence on these enzymes in the substantia nigra. It is concluded that none of the D1 dopaminergic compounds examined here was neurotoxic toward the many different cell groups that contain AChE and/or GAD in the striatum.  相似文献   

3.
Abstract: ARPP-21 is a cyclic AMP-regulated phosphoprotein (Mr= 21,000) that has a distribution in brain similar to that of DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr= 32,000). It is enriched in the medium-sized spiny neurons in the striatum and in the striatonigral nerve terminals in the pars reticulata of the substantia nigra. The present study shows that dopamine D1 agonist SKF 38393 increases the state of phosphorylation of ARPP-21 by 26% in nigral slices and that pretreatment of the slices with D1 antagonist SCH 23390 blocks this effect. These results demonstrate that ARPP-21 is a dopamine-regulated phosphoprotein. Because D1 receptors are localized on nerve terminals of striatonigral pathway, the phosphorylation of ARPP-21 is likely to mediate some of the intracellular effects of dopamine on these terminals.  相似文献   

4.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

5.
6.
Abstract: We have cloned the gene encoding the murine D3 dopamine receptor and have analyzed its intron-exon structural organization, to gain a better understanding of the detailed architecture of the D2 dopamine receptor genes. Restriction and sequence analysis reveal the presence of six introns, in contrast to the five introns previously reported for the rat D3 receptor. The extra intron is located in the receptor's putative third cytoplasmic loop and generates an intron-exon organization directly analogous to that found in the D2 receptor gene. In addition, we have sequenced the 5' and 3' nontranslated sequences flanking the coding region and have identified a putative poly(A) adenylation signal. These sequences are found to have a far lower homology with the corresponding rat nontranslated sequences than is found for the D2 receptor, suggesting that the control of D3 receptor expression may vary more between species than the control of D2 receptor expression.  相似文献   

7.
[3H]SKF 38393 (2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine) binds with high affinity to 3,4-dihydroxyphenylethylamine (dopamine) D-1 receptors in rat striatum in vitro (KD = 7 and 14 nM in nonfrozen and frozen striatum, respectively). The number of binding sites (Bmax) was approximately 80.0 pmol/g of original tissue, a value similar to the Bmax for the dopamine D-1 antagonist SCH 23390. Nondisplaceable [3H]SKF 38393 binding was approximately 45% of total binding. Irradiation (0-4 Mrad) of frozen whole striata decreased the number of [3H]SKF 38393 binding sites monoexponentially without changing the binding affinity. The functional molecular mass for the agonist dopamine D-1 binding site was 132,800 daltons, which is higher than the functional molecular mass of the antagonist dopamine D-1 binding site (approximately 80,000 daltons).  相似文献   

8.
The effects of short-term treatment (6 h) with selective D1 or D2 agonists and antagonists on the mRNA for proenkephalin in the medial and anterior aspects of the caudate-putamen and the nucleus accumbens were assessed by in situ hybridization histochemistry. Proenkephalin mRNA abundance was significantly changed in the striatum and accumbens in response to D2 receptor manipulation. D2 blockade with haloperidol or raclopride increased, whereas D2 stimulation with LY-171555 (D2 agonist) decreased, striatal and accumbens proenkephalin mRNA abundance. Antagonism of D1 receptor activity with SCH-23390 significantly decreased proenkephalin mRNA abundance in all brain regions. Concurrent administration of the D1 agonist SKF-38393 prevented the SCH-23390 effect in all brain areas. The data demonstrate that acute treatment with dopaminergic D2 agonists and antagonists affects proenkephalin mRNA abundance in the striatum and accumbens via a D2 receptor mechanism, consistent with the concept that D2 receptor function inhibits the synthesis of the mRNA encoding the enkephalin peptides. Moreover, D1 receptor activity, directly or indirectly, exerts modulatory effects on proenkephalin mRNA abundance in the striatum and nucleus accumbens.  相似文献   

9.
Preincubation of D384 cells, derived from the human astrocytoma cell line G-CCM, with dopamine resulted in a time-dependent attenuation of cyclic AMP responsiveness to subsequent dopamine stimulation. This effect was agonist specific because the prostaglandin E1 (PGE1) stimulation of cyclic AMP of similarly treated cells remained unchanged. The attenuation by dopamine was concentration dependent with a maximum observed at 100 microM. A comparison of dopamine concentration-response curves of control and dopamine-preincubated cells revealed no change in the Ka apparent value, but a marked attenuation of the maximal response. Preincubation of cells with dopamine in the presence of D1 but not D2 selective antagonists partially prevented the observed attenuation. Attenuations in dopamine responsiveness were also obtained when D384 cells were preincubated with D1 but not D2 receptor agonists. The level of attenuation attained related to agonist efficiency in stimulating cyclic AMP: SKF38393 less than 3,4-dihydroxynomifensine less than fenoldopam less than 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene = dopamine. However, increasing the efficiency of 3,4-dihydroxynomifensine stimulation of cyclic AMP, using the synergistic effect of adding a low concentration of forskolin, produced no further change in the attenuation of the subsequent response to dopamine. Thus, the D1 dopamine receptors expressed by D384 cells undergo homologous desensitization. Uncoupling of the D1 dopamine receptor appears to be independent of cyclic AMP formation, analogous to a mechanism proposed for the beta-adrenergic receptor.  相似文献   

10.
Previous studies have shown that nutritional iron deficiency in rats reduces brain iron content, resulting in dopamine D2 receptor subsensitivity, as indicated by a decrease in [3H]spiperone binding in caudate nucleus and in behavioral responses to apomorphine. Both phenomena can be reversed by iron supplementation. The possibility that neuroleptic-induced dopamine D2 receptor supersensitivity involves an alteration in brain iron content was investigated in nutritionally iron-deficient and control rats chronically treated with haloperidol (5 mg/kg daily for 14 or 21 days). Neuroleptic treatment was initiated either (a) concurrently with iron deficiency or (b) 2 weeks after the start of iron deficiency. The results show that dopamine D2 receptor subsensitivity, a feature of iron deficiency, is absent in haloperidol-treated, iron-deficient groups. On the contrary, these animals demonstrated biochemical and behavioral dopamine D2 receptor supersensitivity that is relatively greater than that observed with control, haloperidol-treated animals. Haloperidol (5 mg/kg daily for 21 days) as well as chlorpromazine (10 mg/kg daily for 21 days) caused a significant reduction (20-25%) in liver nonheme iron stores as compared with values in control rats. However, in iron-deficient rats, in which liver iron stores were almost totally depleted, haloperidol had no effect. The ability of chronic haloperidol treatment to prevent the reduction of dopamine D2 receptor number during iron deficiency may be associated with alteration of body iron status. Thus, less iron may result in an increase in free haloperidol available to the dopamine D2 receptor.  相似文献   

11.
The possible existence of a dopamine D2 receptor-mediated regulation of dopamine release was investigated in the goldfish retina. Isolated retinas were preloaded with [3H]dopamine and superfused with D2 dopamine receptor agonists or antagonists to determine if there was an effect on [3H]dopamine release. The D2 receptor antagonist sulpiride increased both baseline [3H]- dopamine release and [3H]dopamine release induced by an increase in extracellular potassium concentration. The D2 receptor agonists LY-171555 and RU-24213 did not reduce baseline [3H]dopamine release but completely inhibited [3H]dopamine release induced by an increase in [K±]o. This action of the D2 agonists was blocked by sulpiride. These studies demonstrate the existence of D2 receptor, possibly autoreceptor, regulation of dopamine release in the teleost retina.  相似文献   

12.
Abstract: Primary cultures of rat ventral mesencephalon were used to elucidate the role of chronic stimulation of dopamine (DA) D2 autoreceptors in the development of fetal dopaminergic neurons in vitro. Cultured dopaminergic neurons, as visualized by tyrosine hydroxylase immunocytochemistry, became more differentiated in the course of cultivation time and exhibited specific high-affinity uptake for [3H]DA. In rat striatal tissue, activation of D2 receptors has been shown to inhibit the release of DA. Previously accumulated [3H]DA was released from the cultures upon depolarization in a Ca2+-dependent manner. K+-evoked [3H]DA release could be inhibited by the selective D2 receptor agonists LY 171555 and N0437 in a concentration-dependent manner. The inhibitory effects of LY 171555 and N0437 were antagonized by the selective DA D2 receptor antagonist sulpiride. These observations are indicative for the expression of functional D2 receptors in the cultures. Daily treatment of these cultures for 7 days with LY 171555 or sulpiride did not lead to any change in protein content, the number of tyrosine hydroxylase-immunoreactive neurons, or the uptake capacity for [3H]DA. Our data demonstrate that chronic stimulation of DA D2 receptors does not impair survival or differentiation of cultured fetal dopaminergic neurons.  相似文献   

13.
In developing CNS D1 dopamine receptor-imaging agents with improved specificity and longer brain retention, an iodinated D1 ligand was synthesized. In vitro and in vivo radiolabeling studies of a new iodinated benzazepine, TISCH [7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1H-3- benzazepine], an analog of SCH 23390 (7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e), were investigated. After an intravenous injection, the R(+) isomer of TISCH showed high brain uptake in rats (2.20 and 0.57% dose per whole brain at 2 and 60 min, respectively). The striatum/cerebellum ratio increased progressively with time (12 at 60 min). Ex vivo autoradiography of rat brain sections, after intravenous injection of R(+)-[125I]TISCH, displayed the highest uptake in striatum and substantia nigra, regions known to have a high concentration of D1 receptors, whereas the S(-) isomer displayed no specific uptake. Furthermore, the specific uptake can be blocked by pretreatment with SCH 23390. In vitro binding studies using the rat striatum tissue preparation showed high specific and low nonspecific bindings (KD = 0.21 +/- 0.03 nM). The rank order of potency exhibiting high specificity to the D1 receptor was SCH 23390 greater than (+/-)-TISCH greater than (+)-butaclamol = (+/-)-FISCH [7-chloro-8-hydroxy-1-(4'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1 H-3-benzazepine] much greater than WB4101 = spiperone greater than dopamine, serotonin, (+/-)-propranolol, and naloxone. Imaging studies in a monkey with the resolved isomer, R(+)-[123I]TISCH, demonstrated a high uptake in the basal ganglia and prolonged retention. The preliminary data suggest that R(+)-TISCH is selective for the CNS D1 receptor and is potentially useful for in vivo and in vitro pharmacological studies. When labeled with iodine-123, it may be suitable for noninvasive imaging in humans.  相似文献   

14.
Serotonin S2, benzodiazepine, and muscarinic receptors showed different regional distributions in the human brain but were present in all cortical areas. The laminar distributions of [3H]ketanserin, [3H]diazepam, and [3H]quinuclidinylbenzilate were investigated in the temporal cortex and revealed a high density in the IIIrd and IVth layers. Dopamine D2 receptors were not detected in the cortex.  相似文献   

15.
Abstract: Effects of ascorbic acid (AA) on 125I-SCH 23982 binding to D1 dopaminergic receptors in membrane preparations from rat striatum were investigated. AA in the range of 0.03 µ M –0.33 m M inhibited 75% of specific binding of 125I-SCH 23982 in a dose-dependent manner. At higher concentrations, this inhibition of binding activity by AA was less potent, and 3.3 m M AA inhibited only 30% of specific binding. Reduced glutathione did not alter the inhibition of binding by 0.33 m M AA, but reduced the inhibition by 3.3 m M AA to 8% of specific binding. The loss of specific binding by AA was rescued by 1 m M EDTA, an inhibitor of lipid peroxidation. In the absence of AA, competition experiments with the agonist, dopamine, revealed the presence of high-affinity ( K h = 224.9 ± 48.9 n M ) and low-affinity ( K l = 21,100 ± 2,400 n M ) binding sites. Although the maximum binding of 125I-SCH 23982 decreased to 40% without affecting the K D value in the presence of 1.67 m M AA, the value of the high-affinity site for dopamine was increased ( K h = 23.3 ± 9.4 n M ) and that of the low-affinity site was decreased ( K l = 136,800 ± 40,900 n M ). These results suggest that AA may affect D1 dopamine receptor function by lipid peroxidation, competition with dopamine for low-affinity sites, and reduced oxidation of dopamine.  相似文献   

16.
Abstract: Dopamine and the D1, receptor agonist SKF 38393 activate the phospholipase C-rnediated hydrolysis of phosphoinositides in brain slices. This action is selectively inhibited by SCH-23390, thus suggesting its mediation through the dopamine D1 receptor. To determine if the dopamine receptor that mediates Phosphoinositide hydrolysis is the adenylyl, cyclase-linked D1 receptor or a different subtype of the dopamine D1 receptor, 20 benzazepine compounds that were previously characterized as selective dopamine D1 receptor agonists were tested for stimulation of Phosphoinositide hydrolysis in rat striatal slices and for activation of adenylyl cyclase in rat striatal membranes. The compounds displayed a range of potencies and efficacies in stimulating adenylyl cyclase or Phosphoinositide hydrolysis. Compounds such as SKF 81427 and SKF 38393 were as efficacious as dopamine in stimulating Phosphoinositide hydrolysis, whereas other compounds, including SKF 85174 and SKF 86284, although showing high efficacy in stimulating cyclic AMP, failed to stimulate inositol phosphate formation. There was no correlation between the potencies (r= 0.016; p < 0.95) or efficacies (r=?0.294; p < 0.24) of the tested compounds in stimulating cyclic AMP formation and phosphoinositide hydrolysis. These observations indicate that the D1-like dopamine receptor that mediates phosphoinositide hydrolysis is pharmacologically distinct from the classic D1 receptor that is coupled to stimulation of cyclic AMP formation.  相似文献   

17.
Abstract: The ability of human and rat D2(short) and D2(long) dopamine receptors to activate microtubule-associated protein (MAP) kinase (Erk1/2) and p70 S6 kinase has been investigated in recombinant cells expressing these receptors. In cells expressing the D2(short) receptor, dopamine activated both enzymes in a transient manner but with very different time courses, with activation of Erk being much quicker. Activation of both enzymes by dopamine was dose-dependent and could be prevented by a range of selective dopamine antagonists. Excellent correlations were observed between the potencies of the antagonists for blocking enzyme activation and their affinities for the D2 dopamine receptor. Activation of Erk and of p70 S6 kinase via the D2 dopamine receptors was prevented by pretreatment of the cells with pertussis toxin, indicating the involvement of G proteins of the Gi or Go family. Inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase) were found to block substantially, but not completely, activation of p70 S6 kinase by dopamine, suggesting the involvement of PI 3-kinase-dependent and -independent signalling pathways in its control by dopamine. p70 S6 kinase activation was completely blocked by rapamycin. In the case of Erk, activation was partially blocked by wortmannin or LY294002, indicating a possible link with PI 3-kinase.  相似文献   

18.
Abstract: To assess the importance of the cysteine residues Cys347 and Cys351 in the carboxylic tail in the human D1 dopamine receptor, seven mutant receptors were constructed by PCR. The pharmacological and functional properties of the wild-type and mutant receptors were assessed following transient expression in COS-7 cells. Affinities for [3H]SCH 23390 of mutant S347 (Cys347→ Gly), T348 (Tyr348→ stop), S351 (Cys351→ Gly), T351 (Cys351→ stop), T352 (Pro352→ stop), and S347/S351 (Cys347→ Gly and Cys351→ Gly) were similar to that of wild-type receptor, whereas the expression levels were reduced up to 80%. The potency of dopaminergic antagonists for these mutant receptors was very similar to that of the wild-type receptor. However, mutant T347 (Cys347→ stop) showed a 15–25-fold reduced affinity for the antagonists SCH 23390, (+)-butaclamol, and cis-flupentixol, thus not allowing radioligand analysis. Wild-type and mutant receptors responded dose-dependently with similar potency to dopamine and SKF 38393 with an increased adenylyl cyclase activity. However, mutant receptors with the Cys347 residue changed or removed displayed a diminished ability to activate adenylyl cyclase. Dopamine preexposure desensitized wild-type and mutant S351 receptors. However, mutant receptors with Cys347 replaced or the distal part of the carboxyl tail removed were unable to desensitize. Thus, Cys347 in the cytoplasmic tail of the human D1 dopamine receptor is important for the receptor in maintaining the conformation for antagonist binding, to play a crucial role in activation of adenylyl cyclase, and to be essential for agonist-induced desensitization.  相似文献   

19.
The human dopamine D2L (long form) and D2S (short form) receptors were expressed separately in mouse Ltk- fibroblast cells to investigate whether there is a difference in transmembrane signaling of these D2 receptors. Both receptors induced two signals, a phosphatidylinositol-linked mobilization of intracellular calcium and an inhibition of cyclic adenosine 3'-5' monophosphate (cAMP) accumulation, each with similar response magnitudes and identical pharmacology. Both calcium and cAMP signals were sensitive to pretreatment with pertussis toxin (PTX), indicating mediation by coupling to Gi/Go proteins. However, the two forms of D2 receptor were distinguished by acute prior activation of protein kinase C (PKC) with 12-O-tetradecanoyl 4 beta-phorbol 13-acetate (TPA): TPA blocked the D2S-mediated increase in cytosolic free calcium concentration ([Ca2+]i) in a concentration-dependent manner (between 10 nM and 1 microM), whereas the D2L receptor-induced increase in [Ca2+]i was resistant to TPA and was only partially (60%) inhibited by 100 microM TPA. By contrast, TPA did not alter the inhibition of cAMP accumulation induced by activation of either D2S or D2L receptors. We conclude that, in the L cell system, prior activation of PKC differentially modulates the transmembrane signaling of the D2L and D2S receptors, preferentially inhibiting the D2S receptor-mediated calcium signal but not altering the dopamine-induced inhibitory cAMP signal of either receptor subtype.  相似文献   

20.
Abstract: The number of β1-adrenergic receptor (β1AR) binding sites is decreased by chronic antidepressant treatments, including electroconvulsive seizure (ECS) and imipramine, whereas administration of agents that deplete norepinephrine (NE) increases the number of β1AR binding sites in cerebral cortex. The present study was carried out to examine the influence of these treatments on levels of β1 AR mRNA in frontal cortex to study the molecular mechanisms that underlie the regulation of β1 ARs in brain. Levels of β1 AR mRNA were measured by RNase protection analysis using a riboprobe derived from rat β1AR cDNA, and the levels of βAR binding were measured using the nonselective ligand [3H]CGP-12177. Studies to verify the specificity of the RNase protection assay revealed that the distribution of β1AR mRNA was in agreement with the reported distribution of β1AR ligand binding: Levels of β1AR mRNA were highest in cerebral cortex or frontal cortex, intermediate in neostriatum, hippocampus, lung, and heart, and lowest in cerebellum, kidney, and liver. Chronic ECS treatment (once daily for 10 days) significantly decreased levels of βAR ligand binding and resulted in a corresponding, time-dependent down-regulation of β1AR mRNA levels in frontal cortex. However, imipramine administration regulated levels of β1AR mRNA in a biphasic manner, with treatments for 7–14 days increasing and treatments for 18–21 days decreasing levels of β1AR mRNA in frontal cortex. In contrast, levels of [3H]CGP-12177 ligand binding were decreased at all time points examined (3–21 days). The influence of NE depletion, using the neurotoxin 6-hydroxy-dopamine (6-OHDA), on levels of β1AR mRNA was also examined. Three days after 6-OHDA treatment, levels of [3H]CGP-12177 ligand binding were not altered, but 7–14 days after neurotoxin treatment, levels of ligand binding were significantly increased. In contrast, 3–9 days after 6-OHDA treatment, levels of β1AR mRNA were significantly decreased, and 14 days after treatment, levels of β1AR mRNA returned to control values. The results demonstrate that β1AR mRNA and ligand binding are regulated in parallel by ECS treatment but that levels of receptor mRNA are regulated in a complex manner by imipramine or 6-OHDA treatments, not predicted by changes in ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号