首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rates of functional differentiation of the CNS were studied in mice, selected for high (H-line), and low (L-line) brain weight. Four tests were used, based on most distinct reflex responses. Comparison of ages of responses accomplishment in all the tests indicates that mice from L-line meet the test criteria on average 0.5 day earlier than those from H-line. The obtained data suggest that the low adult brain weight in L-line originates from genetically controlled early CNS maturation.  相似文献   

2.
Reproductive performance, mammary gland weight and plasma concentrations of insulin-like growth factor-1 (IGF-1) were examined in 18-day-pregnant mice from lines divergently selected on the basis of plasma IGF-1 concentration. Females of the high IGF-1 (H) line were 14% heavier than those of the low IGF-1 (L) line at mating but did not differ in conception rate during a 15-day mating period. H-line females produced significantly larger litters by an average of 1.5 fetuses (19%), heavier fetuses (7%), greater total fetal weight (30%), heavier placental discs (15%), greater total placental weight (35%) and heavier mammary glands (18%). Plasma IGF-1 values were 12% greater in H-line than L-line females at Day 19 of gestation but the line difference was not significant. It is concluded that differences between the lines in litter size and mammary gland weight are most likely due to differences in maternal bodyweight (which are in turn a consequence of selection for plasma IGF-1 at puberty). Whether the difference in fetal weight is a function of fetal capacity to grow in utero or ability of the dam to provide nutrients for fetal growth is yet to be determined.  相似文献   

3.
The study was performed on 2 lines of rat selected for high (H) and low (L) excitability threshold of the nervous-muscle apparatus. H-line rats have higher values of spike conduction velocity in caudal and tibial nerves, as compared to those obtained in L-line rats. It is suggested that behavioral differences between these two lines of rat may be connected with changes of neurological characters both of peripheral and central nervous system, as a result of selection.  相似文献   

4.
The dynamics of FSH and LH secretion were studied in sheep genetically selected for High (H) and Low (L) rates of testis growth. Gonadotrophin secretion had previously been shown to be affected in the ram lamb with H-line lambs more sensitive to steroid feedback than L. While there were significant differences in mean LH concentrations during the luteal and follicular phases of the oestrous cycle, mean LH values were essentially similar in the two lines in response to ovariectomy, the effect of oestradiol implants on the response to ovariectomy and the response to LHRH. However, the frequency of LH pulses in the H line was similar during both phases of the oestrous cycle, showing a surprising insensitivity to steroid feedback. By contrast, LH pulse frequency was markedly lower in the L-line ewes in the luteal than the follicular phase (0.6 vs 1.1 pulses/h) as expected from the literature. Mean FSH concentrations were significantly higher in the L-line ewes during the follicular phase of the oestrous cycle and after ovariectomy but no significant differences were detected at the other sampling periods. There were no differences in ovulation rate between the lines. It was concluded that selection for testis size had affected the feedback control of gonadotrophin release in the ewe, as in the ram, and hence the expression of the genes controlling this is not sex limited.  相似文献   

5.
Computer analysis of the maps of distribution of intensively labelled neurons (ILN) in the frontal sections of area 6 of the frontal neocortex and area CA 1 of the dorsal hippocamp was performed in 1-day-old mice who received a single injection of 3H-thymidine on the 13th-17th day of embryogenesis (E 13-E 17). It has been revealed that ILN are distributed in rather close, vertically oriented groups. In mice exposed to isotope in E 14-E 16, the average number of ILN in a group was 4.44 +/- 0.25 for area 6 and 4.35 +/- 0.16 for area CA 1. The data available have confirmed an earlier postulated hypothesis on the discrete arrangement of neurogenesis loci in the ventricular zone of the embryonic brain. Additional calculations have allowed to conclude that in E 14-E 16 period the locus of the ventricular neocortex during one mitotic cycle produces 7-9 cells starting the neuronal differentiation, while during the whole period of neurogenesis in the neocortex the column consisting of 84-108 neurons is formed, which is close to the number of neurons in a minicolumn of the neocortex (110 cells).  相似文献   

6.
Conflicting findings exist regarding the formation of diffuse and dense-core β-amyloid (Aβ) plaques in Alzheimer’s disease (AD). In the present study, we characterized Aβ plaque types in the brain and spinal cord of TgCRND8 mice, which express a transgene incorporating both the Indiana mutation (V717F) and the Swedish mutations (K670N/M671L) in the human amyloid-β protein precursor (APP) gene. By combining immunohistochemistry and thioflavin S staining, we were able to define dense-core and diffuse plaques in neocortex of the brain and spinal cord of 9 week-, 5 month-, 10 month- and 20-month-old TgCRND8 mice. The senile plaques in the neocortex were predominantly dense-core plaques, even in the youngest mice. However, diffuse plaques were instead detected in spinal cord of the mice, regardless of age. Our results that relative predominance of dense-core plaques in the neocortex and diffuse plaques in the spinal cord of TgCNRD8 mice of all disease durations argue against the notion that diffuse plaques may represent an early stage in the evolution of dense-core plaques. Furthermore, we also found that the ratio of Aβ42/Aβ40 of the brain was much higher than that of the spinal cord by Aβ ELISA assay. Our findings strongly indicate that diffuse and dense-core plaques may form via independent processes in AD and Aβ42 is more prone to form dense-core plaques than is Aβ40.  相似文献   

7.
 Several quantitative trait loci (QTLs) contributing to the extreme phenotypes of the selected high (H) and low (L) antibody-responder lines of mice were mapped on distinct chromosomes. Successive backcrosses were bred to reduce the length of the QTL-bearing segment detected on chromosome 8 and to produce congenic lines to test gene effect independently of the other QTLs. An increase in antibody responses was repeatedly found to be associated with inheritance of the H-line allele at two markers separated by 30 cM on that chromosome. In the successive backcrosses, background and unlinked involved genes of H-line origin were progressively eliminated; however, unexpected within-progeny variations persisted in the third and even fourth backcross. Nevertheless, the presence of two QTLs within the considered interval was definitely demonstrated in distinct progenies of the fourth backcross which separately inherited one of the two gene-marker H-line alleles. The previously identified chromosome 8 segment therefore contains at least two QTLs involved in antibody responsiveness. Received: 19 August 1997 / Revised: 9 October 1997  相似文献   

8.
In this study we use neuroanatomic data from living anthropoid primate subjects to test the following three hypotheses: (1) that the human neocortex is significantly larger than expected for a primate of our brain size, (2) that the human prefrontal cortex is significantly more convoluted than expected for our brain size, and (3) that increases in cerebral white matter volume outpace increases in neocortical gray matter volume among anthropoid primates. Whole brain MRI scans were obtained from 44 living primate subjects from 11 different species. Image analysis software was used to calculate total brain volume, neocortical gray matter volume, cerebral white matter volume, and the cross sectional area of the spinal cord in each scan. Allometric regression analyses were used to compare the relative size of these brain structures across species, with an emphasis on determining whether human brain proportions correspond with predictions based on nonhuman primate allometric trajectories. All three hypotheses were supported by our analysis. The results of this study provide additional insights into human brain evolution beyond the important observation that brain volume approximately tripled in the hominid lineage by demonstrating that the neocortex was uniquely modified throughout hominid evolution. These modifications may constitute part of the neurobiological substrate that supports some of our species most distinctive cognitive abilities.  相似文献   

9.
Cortical astrocytes express fast ionotropic receptors for glutamate and ATP, although their role in neurone-glia communication remains controversial. Stimulation of neuronal afferents in mice neocortex triggers complex glial synaptic currents (GSCs) mediated by NMDA, P2X and AMPA receptors and glutamate transporters. In addition, astrocytes demonstrate spontaneous 'miniature' GSCs resulting from quantal release of neurotransmitters. Here, we demonstrate that maturation and aging of the brain of mice (from 1 to 21 months) affect the density of ionotropic receptors in astrocytes and their role in GSCs generation. The AMPA-receptor-mediated component is the largest in young animals and progressively declines with age. The P2X and NMDA components of GSC are smallest in young, maximal in adult (3 and 6 months old) and once more decrease in old mice, probably reflecting the remodelling of neuronal-glial circuitry. Our results demonstrate that fast synaptic transmission between neurones and astrocytes in neocortex that may be involved in information processing in neuronal-glial networks undergoes remodelling during brain maturation and aging.  相似文献   

10.
11.
Increased Level of β-Amyloid in the Brain of Bulbectomized Mice   总被引:1,自引:0,他引:1  
Six weeks after bilateral olfactory bulbectomy, a peptide with molecular weight of 4 kD was revealed in extracts of the neocortex and hippocampus from mice. Using monoclonal antibodies 4G8, this peptide was identified as beta-amyloid. Its level was significantly higher in the bulbectomized animals than in sham-operated mice. The bulbectomized mice displayed sharp impairment in spatial memory when tested in the Morris water maze. The results suggest that bulbectomy initiates in the brain a pathological process similar to human Alzheimer's disease in location, biochemistry, and behavioral manifestations.  相似文献   

12.
Experiments on cats with cooling capsules implanted over different areas of the neocortex have shown that cooling of different intensity applied to the temporal neocortex may result in both stimulation and switching off effects. Cold stimulation (temperature dropping to 27-33 degrees C) manifested in generalized epileptiform brain electrical activity and paroxysmal states. The functional switching off the temporal area observed during its deeper cooling (20-21 degrees C) discontinues the paroxysmal state already developed and prevents the appearance of seizures, regrardless of the localization of the epileptogenic focus. The paroxysmal state weakens and ceases after repeated cooling of the temporal neocortex. The temporal neocortex, involved in the integrated activating brain system, plays a decisive role in the emergence of paroxysmal states.  相似文献   

13.
14.
Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5′-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.  相似文献   

15.
In our previous study, diazepam (DZP), a benzodiazepine receptor agonist, failed to suppress foot-shock-elicited ultrasonic vocalizations (USVs) in adult rats that had been neonatally lesioned in the neocortex. Because neonatal lesion of the neocortex did not influence the production of USVs, the presence of an anxiolytic mechanism of DZP is suggested apart from any anxiogenic mechanism in the brain. However, the previous study did not indicate any specific cortical regional lesions that impaired the normal development of the anxiolytic mechanism in the brain. The present study was undertaken in order to examine whether neonatal lesion of the neocortex, smaller and more localized than that in the previous study, abolishes the anxiolytic effect of DZP on foot-shock-elicited and air-puff-elicited USVs. A neonatal lesion about 2 mm diameter was made in the unilateral frontal cortex frontal to the hindlimb area or in the occipital cortex caudal to the hindlimb area. The attenuating effect of DZP on the USVs elicited by both aversive stimuli was found to be abolished only in the frontal cortex-lesioned rats. This finding indicates that the frontal cortex is likely to be specifically involved in the normal development of the benzodiazepine-anxiolytic mechanism in the brain.  相似文献   

16.
The functional role of histone deacetylase 3 (HDAC3) in the developing brain has yet to be elucidated. We show that mice lacking HDAC3 in neurons and glia of the central nervous system, Nes-Cre/HDAC3 conditional KO mice, show major abnormalities in the cytoarchitecture of the neocortex and cerebellum and die within 24 h of birth. Later-born neurons do not localize properly in the cortex. A similar mislocalization is observed with cerebellar Purkinje neurons. Although the proportion of astrocytes is higher than normal, the numbers of oligodendrocytes are reduced. In contrast, conditional knockout of HDAC3 in neurons of the forebrain and certain other brain regions, using Thy1-Cre and calcium/calmodulin dependent protein kinase II α-Cre for ablation, produces no overt abnormalities in the organization of cells within the cortex or of cerebellar Purkinje neurons at birth. However, both lines of conditional knockout mice suffer from progressive hind limb paralysis and ataxia and die around 6 weeks after birth. The mice display an increase in overall numbers of cells, higher numbers of astrocytes, and Purkinje neuron degeneration. Taken together, our results demonstrate that HDAC3 plays an essential role in regulating brain development, with effects on both neurons and glia in different brain regions.  相似文献   

17.
18.
By macroautoradiography and by GLC separation, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, hippocampus, thalamus and hypothalamus were investigated. (1) The autoradiographical densities in the thalamus, cerebral neocortex and hippocampus measured with a microdensitometer were higher than that in the hypothalamus at 5 min after subcutaneous injection. At 180 min, densities in the cerebral neocortex, hippocampus and hypothalamus were higher than that in thalamus. (2) The free amino acid levels determined by GLC varied with each brain region. (3) The specific radioactivity (d.p.m./μmol) of alanine in each brain region was higher than that of the other amino acids at 5 min after the injection. The specific radioactivity of GABA in the brain regions was clearly higher than that of (glutamate + glutamine), (aspartate + asparagine) and glycine at 5 and 15 min. (4) The autoradiographical data were in good agreement with the chemical data at 5 min but were different at 180 min. (5) Variations in specific radioactivity of each free amino acid among brain regions at 5 min were influenced greatly by existing free amino acid concentrations in each region.  相似文献   

19.
20.
In this study we compared the membrane resting potential and action potential (AP) activation thresholds of neocortical layer 2/3 and CA1 hippocampal pyramidal cells in brain slices from 6–8-day old mice. The activation threshold was −37 ± 2 mV in the neocortical pyramids (5 cells), and −50 ± 1 mV in the CA1 ones (5 cells). The observed difference in the AP activation thresholds may account for a higher excitability of hippocampus as compared to neocortex. The article is submitted by the author in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号