首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We have studied freely flying and walking flies as well as flies flying in a flight simulator in order to discover how functionally blinding one of the eyes affects the fly's ability to move straight. It is hard to tell just by observing the animals' movements whether they have been deprived of vision in one eye. Statistical analysis is need to show that there are differences in the locomotory paths of monocular and binocular flies: monocular flies tend to turn slightly towards the side of the seeing eye. It is possible that the superimposed translational and rotational optic flow fields, generated on the trajectory of monocular flies, sum to zero net flow. This overall flow over the retina of the open eye might lead to a state of optomotor equilibrium. Accepted: 11 October 1999  相似文献   

2.
Hymenopteran insects perform systematic learning flights on departure from their nest, during which they acquire a visual representation of the nest environment. They back away from and pivot around the nest in a series of arcs while turning to view it in their fronto-lateral visual field. During the initial stages of the flights, turning rate and arc velocity relative to the nest are roughly constant at 100–200° s−1 and are independent of distance, since the insects increase their flight speed as they back away from the pivoting centre. In this paper I analyse how solitary wasps control their flight by having them perform learning flights inside a rotating striped drum. The wasps' turning velocity is under visual control. When the insects fly inside a drum that rotates around the nest as a centre, their average turning rate is faster than normal when they fly an arc into the direction of drum rotation and slower when they fly in the opposite direction. The average slip speed they experience lies within 100–200° s−1. The wasps also adjust their flight speed depending on the rotation of the drum. They modulate their distance from the pivoting centre accordingly and presumably also their height above ground, so that maximal ground slip is on average 200°␣s−1. The insects move along arcs by short pulses of translation, followed by rapid body turns to correct for the change in retinal position of the nest entrance. Saccadic body turns follow pulses of translation with a delay of 80–120 ms. The optomotor response is active during these turns. The control of pivoting flight most likely involves three position servos, to control the retinal position of both the azimuth and the altitude of nest and the direction of flight relative to it, and two velocity servos, one constituting the optomotor reflex and the other one serving to clamp ground slip at about 200° s−1. The control of ground slip is the prime source of the dynamic constancy of learning flights, which may help wasps to scale the pivoting parallax field they produce during these flights. Constant pivoting rate may in addition be important for the acquisition of a regular sequence of snapshots and in scanning for compass cues. Accepted : 31 July 1996  相似文献   

3.
《Luminescence》2003,18(6):313-317
In this work, a new flow injection chemiluminescence method is described for the determination of ampicillin and amoxycillin. The method is based on the strong enhancing effects of these antibiotics on the luminol–periodate reaction. The present method allows the measurements of ampicillin in the range 0.02–1.0 mg/L range and amoxycillin in the range 0.1–10.0 mg/L range with the relative standard deviations within 0.8–2.0%. The sampling frequency was calculated about 90/h. The method was successfully applied to the determination of ampicillin and amoxycillin in pharmaceutical preparations. A brief discussion on the possible chemiluminescence reaction mechanism is presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
  • 1 Cabbage loopers Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) are serious pests in greenhouses growing tomatoes, cucumbers and bell peppers. A potential microbial control, now in development, is the broad host‐range virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV).
  • 2 The relationships between the three host plants and the feeding behaviour, larval movement and performance of cabbage looper larvae that might relate to their interaction with AcMNPV applications were investigated.
  • 3 Larvae reared on cucumber plants consumed approximately ten‐fold more leaf area than larvae reared on pepper plants and almost five‐fold more than larvae reared on tomato plants. This could influence the amount of AcMNPV consumed if it were used as a microbial spray because increased consumption can be associated with increased probability of infection. Survival from neonate to pupa also varied, with the greatest being on cucumber, followed by tomato and pepper plants. Larvae fed cucumber were approximately four‐fold heavier than larvae fed tomato and over 15‐fold heavier than larvae fed pepper plants.
  • 4 The distribution of larvae on plants in commercial greenhouses where a single crop was being grown also varied with food plant with 73% being found on the bottom and middle portions of tomato plants and 87% occurring in the top portions of pepper plants. Larvae tended to be distributed on the middle portion of cucumber plants, the lower portion of tomato plants and the top portion of pepper plants. Larval movement did not vary between AcMNPV‐infected and uninfected controls.
  • 5 It is predicted that the higher leaf area consumption and location of larvae in the middle portion of cucumber plants may make them more susceptible to viral sprays. Furthermore, given their greater survival than larvae fed tomato and pepper, there may be a greater need for virus applications.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号