共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana 总被引:16,自引:0,他引:16
We have characterized cDNAs for two new dhn/lea/rab (dehydrin, late embryogenesis-abundant, responsive to ABA)-related genes from Arabidopsis thaliana. The two genes were strongly induced in plants exposed to low temperature (4 °C) and were accordingly designated lti45 and lti30 (low temperature-induced). The lti45 gene product contains the conserved serine stretch and three lysine-rich repeats characteristic of DHN/LEA/RAB proteins and is very similar to another low temperature-responsive protein of A. thaliana, COR47 [17]. Both proteins have the same repeat structure and an overall amino acid identity of 64%. This structural similarity of the proteins and the tandem array of the genes suggest that this gene pair arose through a duplication. The other polypeptide, LTI30, consists of several lysine-rich repeats, a structure found in CAP85, a low temperature-and water stress-responsive protein in spinach [41] and similar proteins found in wheat [20].The expression pattern of the five dhn/lea/rab-related genes (cor47, dhnX, lti30, lti45 and rab18) identified so far in A. thaliana, was characterized in plants exposed to low temperature, drought and abscisic acid (ABA). Expression of both lti30 and lti45 was mainly responsive to low temperature similar to cor47. The lti45 and lti30 genes show only a weak response to ABA in contrast to cor47, which is moderately induced by this hormone. The three genes were also induced in severely water-stressed plants although the expression of lti30 and lti45 was rather low. In contrast to these mainly low temperature-induced genes, the expression of rab18 was strongly induced both in water-stressed and ABA-treated plants but was only slightly responsive to cold. The dhnX gene showed a very different expression pattern. It was not induced with any of the treatments tested but exhibited a significant constitutive expression. The low-temperature induction of the genes in the first group, lti30 and lti45, is ABA-independent, deduced from experiments with the ABA-deficient (aba-1) and ABA-insensitive (abi1) mutants of A. thaliana, whereas the induction of rab18 is ABA-mediated. The expression of dhnX was not significantly affected in the ABA mutants. 相似文献
3.
4.
We have isolated a rab-related (responsive to ABA) gene, rab18 from Arabidopsis thaliana. The gene encodes a hydrophilic, glycine-rich protein (18.5 kDa), which contains the conserved serine- and lysine-rich domains characteristic of similar RAB proteins in other plant species. The rab18 mRNA accumulates in plants exposed to low temperature, water stress or exogenous ABA but not in plants subjected to heat shock. This stress-related accumulation of the rab18 mRNA is markedly decreased in the ABA-synthesis mutant aba-1, the ABA-response mutant abi-1 or in wild-type plants treated with the carotenoid synthesis inhibitor, fluridone. Exogenous ABA treatment can induce the rab18 mRNA in the aba-1 mutant but not in the abi-1 mutant. These results provide direct genetic evidence for the ABA-dependent regulation of the rab18 gene in A. thaliana. 相似文献
5.
6.
7.
Nägele T Stutz S Hörmiller II Heyer AG 《The Plant journal : for cell and molecular biology》2012,72(1):102-114
Central carbohydrate metabolism of Arabidopsis thaliana is known to play a crucial role during cold acclimation and the acquisition of freezing tolerance. During cold exposure, many carbohydrates accumulate and a new metabolic homeostasis evolves. In the present study, we analyse the diurnal dynamics of carbohydrate homeostasis before and after cold exposure in three natural accessions showing distinct cold acclimation capacity. Diurnal dynamics of soluble carbohydrates were found to be significantly different in cold-sensitive and cold-tolerant accessions. Although experimentally determined maximum turnover rates for sucrose phosphate synthase in cold-acclimated leaves were higher for cold-tolerant accessions, model simulations of diurnal carbohydrate dynamics revealed similar fluxes. This implied a significantly higher capacity for sucrose synthesis in cold-tolerant than cold-sensitive accessions. Based on this implication resulting from mathematical model simulation, a critical temperature for sucrose synthesis was calculated using the Arrhenius equation and experimentally validated in the cold-sensitive accession C24. At the critical temperature suggested by model simulation, an imbalance in photosynthetic carbon fixation ultimately resulting in oxidative stress was observed. It is therefore concluded that metabolic capacities at least in part determine the ability of accessions of Arabidopsis thaliana to cope with changes in environmental conditions. 相似文献
8.
9.
Insects can increase their resistance to cold stress when they are exposed to non-lethal conditions prior to the stress; these plastic responses are normally described only in terms of immediate effects on mortality. Here we examine in Drosophila melanogaster the short- and longer-term effects of different conditions on several measures of cold resistance, but particularly chill coma recovery. Short-term exposure to sublethal temperature (cold hardening) did not decrease chill coma recovery times even though it decreased mortality. Exposure to 12 degrees C for 2 days (acclimation) decreased chill coma recovery times for a range of stressful temperatures when flies were cultured at 25 degrees C, but did not usually affect recovery times when flies were cultured at 19 degrees C. In contrast, 2-day exposure to 12 degrees C decreased mortality regardless of rearing temperature. Rearing at 19 degrees C decreased mortality and chill coma recovery time relative to rearing at 25 degrees C. Acclimation increased the eclosion rate of eggs from stressed females, but did not affect development time or size of the offspring. These results indicate that plastic responses to cold in D. melanogaster are complex when resistance is scored in different ways, and that effects can extend across generations. 相似文献
10.
Monitoring the expression profiles of 7000 Arabidopsis genes under drought,cold and high-salinity stresses using a full-length cDNA microarray 总被引:22,自引:0,他引:22
Seki M Narusaka M Ishida J Nanjo T Fujita M Oono Y Kamiya A Nakajima M Enju A Sakurai T Satou M Akiyama K Taji T Yamaguchi-Shinozaki K Carninci P Kawai J Hayashizaki Y Shinozaki K 《The Plant journal : for cell and molecular biology》2002,31(3):279-292
11.
Methionine residues of proteins are a major target for oxidation by reactive oxygen species (ROS), which are generated in response to a variety of stress conditions. Methionine sulfoxide (MetO) reductases are present in most organisms and play protective roles in the cellular response to oxidative stress, reducing oxidized MetO back to Met. Previously, an Arabidopsis MetO reductase, MsrB3, was identified as a cold-responsive protein. Here we report that MsrB3 functions in the process of cold acclimation, thus contributing to cold tolerance. In contrast to normal, wild-type plants, msrb3 mutant plants lost the ability to become tolerant to freezing temperatures following cold pre-treatment. Furthermore, when exposed to low temperature, msrb3 plants exhibited a larger increase in MetO and H(2)O(2) content and electrolyte leakage compared with wild-type and MsrB3 transgenic plants. It is also shown that MsrB3 is localized at the endoplasmic reticulum (ER). We propose that MsrB3 plays an important role in cold tolerance by eliminating MetO and ROS that accumulate at the ER during cold acclimation. 相似文献
12.
Helena A. Herrmann Beth C. Dyson Matthew A. E. Miller Jean‐Marc Schwartz Giles N. Johnson 《Plant, cell & environment》2021,44(1):171-185
Photosynthesis is especially sensitive to environmental conditions, and the composition of the photosynthetic apparatus can be modulated in response to environmental change, a process termed photosynthetic acclimation. Previously, we identified a role for a cytosolic fumarase, FUM2 in acclimation to low temperature in Arabidopsis thaliana. Mutant lines lacking FUM2 were unable to acclimate their photosynthetic apparatus to cold. Here, using gas exchange measurements and metabolite assays of acclimating and non‐acclimating plants, we show that acclimation to low temperature results in a change in the distribution of photosynthetically fixed carbon to different storage pools during the day. Proteomic analysis of wild‐type Col‐0 Arabidopsis and of a fum2 mutant, which was unable to acclimate to cold, indicates that extensive changes occurring in response to cold are affected in the mutant. Metabolic and proteomic data were used to parameterize metabolic models. Using an approach called flux sampling, we show how the relative export of triose phosphate and 3‐phosphoglycerate provides a signal of the chloroplast redox state that could underlie photosynthetic acclimation to cold. 相似文献
13.
Ellen Zuther Dirk K. Hincha Lothar Willmitzer 《The Plant journal : for cell and molecular biology》2012,72(6):972-982
Freezing injury is a major factor limiting the geographical distribution of plant species and the growth and yield of crop plants. Plants from temperate climates are able to increase their freezing tolerance during exposure to low but non‐freezing temperatures in a process termed cold acclimation. Damage to cellular membranes is the major cause of freezing injury in plants, and membrane lipid composition is strongly modified during cold acclimation. Forward and reverse genetic approaches have been used to probe the role of specific lipid‐modifying enzymes in the freezing tolerance of plants. In the present paper we describe an alternative ecological genomics approach that relies on the natural genetic variation within a species. Arabidopsis thaliana has a wide geographical range throughout the Northern Hemisphere with significant natural variation in freezing tolerance that was used for a comparative analysis of the lipidomes of 15 Arabidopsis accessions using ultra‐performance liquid chromatography coupled to Fourier‐transform mass spectrometry, allowing the detection of 180 lipid species. After 14 days of cold acclimation at 4°C the plants from most accessions had accumulated massive amounts of storage lipids, with most of the changes in long‐chain unsaturated triacylglycerides, while the total amount of membrane lipids was only slightly changed. Nevertheless, major changes in the relative amounts of different membrane lipids were also evident. The relative abundance of several lipid species was highly correlated with the freezing tolerance of the accessions, allowing the identification of possible marker lipids for plant freezing tolerance. 相似文献
14.
G. Leftheriotis G. Savourey J. L. Saumet J. BitteL 《European journal of applied physiology and occupational physiology》1990,60(1):49-53
To determine the vascular changes induced by local cold acclimation, post-ischaemia and exercise vasodilatation were studied in the finger and the forearm of five subjects cold-acclimated locally and five non-acclimated subjects. Peak blood flow was measured by venous occlusion plethysmography after 5 min of arterial occlusion (PBFisc), after 5 min of sustained handgrip at 10% maximal voluntary contraction (PBFexe), and after 5 min of both treatments simultaneously (PBFisc + exe). Each test was performed at room temperature (25 degrees C, SE 1 C) (non-cooled condition) and after 5 min of 5 degrees C cold water immersion (cooled condition). After the cold acclimation period, the decrease in skin temperature was more limited in the cold-acclimated compared to the non-acclimated (P less than 0.01). The PBFisc was significantly reduced in the cooled condition only in the cold-acclimated subjects (finger: 8.4 ml.100 ml-1.min-1, SE 1.1, P less than 0.01; forearm: 5.8 ml.100 ml-1.min-1, SE 1.5, P less than 0.01) compared to the non-cooled condition. Forearm PBFexe was significantly decreased in the cooled condition only in the cold-acclimated subjects (non-cooled: 7.4 ml.100 ml-1.min-1, SE 1.2; cooled: 3.9 ml.100 ml-1.min-1, SE 2.6, P less than 0.05) indicating that muscle blood flow was also reduced.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
冷驯化条件下大绒鼠的产热和能量代谢特征 总被引:7,自引:0,他引:7
本文主要研究了冷驯化(5℃±1℃)条件下,大绒鼠(Eothenomys miletus)的能量收支、基础代谢率(BMR)、非颤抖性产热(NST)和肝脏线粒体呼吸.结果表明:随着冷驯化的进行,大绒鼠的体重、体温降低;摄入能、消化能、可代谢能增加;BMR和NST增加;肝脏线粒体呼吸状态Ⅲ呼吸先增加,28天后趋于平稳;线粒体状态Ⅳ呼吸先增加,28天后下降.说明在冷驯化条件下,大绒鼠采取适当降低体重和体温、增加能量摄入、增加BMR和NST产热的对策来维持能量平衡 相似文献
16.
17.
Thermal plasticity can help organisms coping with climate change. In this study, we analyse how laboratory populations of the ectotherm species Drosophila subobscura, originally from two distinct latitudes and evolving for several generations in a stable thermal environment (18 °C), respond plastically to new thermal challenges. We measured adult performance (fecundity traits as a fitness proxy) of the experimental populations when exposed to five thermal regimes, three with the same temperature during development and adulthood (15-15 °C, 18-18 °C, 25-25 °C), and two where flies developed at 18 °C and were exposed, during adulthood, to either 15 °C or 25 °C. Here, we test whether (1) flies undergo stress at the two more extreme temperatures; (2) development at a given temperature enhances adult performance at such temperature (i.e. acclimation), and (3) populations with different biogeographical history show plasticity differences. Our findings show (1) an optimal performance at 18 °C only if flies were subjected to the same temperature as juveniles and adults; (2) the occurrence of developmental acclimation at lower temperatures; (3) detrimental effects of higher developmental temperature on adult performance; and (4) a minor impact of historical background on thermal response. Our study indicates that thermal plasticity during development may have a limited role in helping adults cope with warmer - though not colder - temperatures, with a potential negative impact on population persistence under climate change. It also emphasizes the importance of analysing the impact of temperature on all stages of the life cycle to better characterize the thermal limits. 相似文献
18.
Differential expression of manganese superoxide dismutase sequence variants in near isogenic lines of wheat during cold acclimation 总被引:7,自引:0,他引:7
Numerous sequence variants of wheat (Triticum aestivum L.) manganese superoxide dismutase (MnSOD) genes have been found. Quantitative real-time PCR was used to measure the expression
levels of three MnSOD genes distinguished by a variable amino acid, and three genes distinguished by sequence variation in
the 3′ untranslated region (3′ UTR), in wheat plants grown at 20°C and cold-acclimated for 1–4 weeks at 2°C. The amino acid
variants did not differ significantly in expression levels, however, differential expression of genes differing in the 3′
UTR was observed. Diploid wheat-related species also carried sequence variants of MnSOD, with differing levels of expression,
suggesting diversification of the MnSOD gene family occurred prior to the polyploidization events of hexaploid wheat. 相似文献
19.
Y. Dong A. A. Teleman C. Jedmowski M. Wirtz R. Hell 《Plant biology (Stuttgart, Germany)》2019,21(Z1):77-83
- Low temperature is one of the most important environmental factors that affect global survival of humans and animals and equally importantly the distribution of plants and crop productivity. Survival of metazoan cells under cold stress requires regulation of the sensor‐kinase Target Of Rapamycin (TOR). TOR controls growth of eukaryotic cells by adjusting anabolic and catabolic metabolism. Previous studies identified the Thyroid Adenoma Associated (THADA) gene as the major effect locus by positive selection in the evolution of modern human adapted to cold. Here we investigate the role of THADA in TOR signaling and cold acclimation of plants.
- We applied BLAST searches and homology modeling to identify the AtTHADA (AT3G55160) in Arabidopsis thaliana as the highly probable orthologue protein. Reverse genetics approaches were combined with immunological detection of TOR activity and metabolite profiling to address the role of the TOR and THADA for growth regulation and cold acclimation.
- Depletion of the AtTHADA gene caused complete or partial loss of full‐length mRNA, respectively, and significant retardation of growth under non‐stressed conditions. Furthermore, depletion of AtTHADA caused hypersensitivity towards low‐temperatures. Atthada displayed a lowered energy charge. This went along with decreased TOR activity, which offers a molecular explanation for the slow growth phenotype of Atthada. Finally, we used TOR RNAi lines to identify the de‐regulation of TOR activity as one determinant for sensitivity towards low‐temperatures.
- Taken together our results provide evidence for a conserved function of THADA in cold acclimation of eukaryotes and suggest that cold acclimation in plants requires regulation of TOR.
20.
Overwintering crops such as winter wheat display significant increase in freezing tolerance during a period of cold acclimation (CA). To gain better understanding of molecular mechanisms of CA, it is important to unravel functions and regulations of CA-associated genes. Differential screening of a cDNA library constructed from cold acclimated crown tissue of winter wheat identified three novel CA-associated cDNA clones. Nucleotide sequence analysis showed that the clones encode a high mobility globular protein (HMGB1), a glycine-rich RNA-binding protein (TaGRP2), and a LEA D-11 dehydrin (DHN14). Accumulation of the three mRNAs during 14 days of CA was differentially regulated. In response to drought, and ABA, DHN14 mRNA rapidly accumulated while HMGB1 and TaGRP2 mRNA levels remained unchanged. The possible functions of each of these genes in cold acclimation are discussed. 相似文献