首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nuclear and microtubular cycles were studied in large heterophasic multinuclear cells induced in root tips ofTriticum turgidum by caffeine treatment. Multinuclear cells and cells with polyploid nuclei exhibited various configurations of multiple and complex preprophase microtubule (Mt) bands (PPBs), including helical ones. The developmental stages of PPBs in some heterophasic cells did not comply with the cell cycle stages of the associated nuclei, a fact indicating that these events are not directly controlled by the associated nuclei. The heterophasic cells exhibited asynchronous nuclei at different stages of mitosis. In cells displaying prophase and interphase nuclei, the prophase spindle was either absent or developed around both of them or developed around the prophase nuclei earlier than around the interphase ones. During prometaphase-metaphase of the advanced nuclei the lagging interphase nuclei were induced to form prematurely condensed chromosomes (PCCs) along with spindle formation around them. These observations suggest that the mitotic transition in heterophasic cells is delayed but is ultimately achieved due to the effect of the advanced nuclei, which induces a premature mitotic entry of the lagging nuclei. Although kinetochore Mt bundles were found associated with PCCs, their metaphase and anaphase spindles were abnormal resulting in abnormal or abortive anaphases. In some heterophasic cells, metaphase-anaphase transition did not take place simultaneously in different chromosome groups, signifying that the cells do not exit from the mitotic state after anaphase initiation of the advanced nuclei. Asynchronous pace of mitosis of different chromosome groups was also observed during anaphase and telophase. Implications of these observations in understanding plant cell cycle regulation are discussed.Abbreviations cdk cyclin dependent kinase - Mt microtubule - PCC prematurely condensed chromosome - PPB preprophase band  相似文献   

2.
During the eukaryote cell cycle the nuclear envelope displays a series of major morphogenetic changes, the most significant of which include its breakdown and reconstitution as cells move up to, pass through and emerge from division. The three polypeptides, lamins A, B and C, are major components of the nuclear pore complex-lamina fraction of the nuclear envelope and their association with the nuclear membrane or their dispersal in the cytoplasm reflects the existing balance between polymerization and depolymerization in the envelope. We have perturbed the lamina polymerization cycle by means of cell fusion between mitotic and interphase cells, following the redistribution of nuclear lamina protein by means of immunofluorescence techniques. In these heterophasic heterokaryons changes in the distribution of lamina occur as a function of (1) the time elapsed after fusion; (2) the ratio of mitotic to interphase elements in the cell, and (3) the stage in the cell cycle occupied by the interphase partner at the time of fusion. Depolymerization of nuclear lamina occurs most rapidly in cells with high ratios of mitotic to interphase elements, and especially in G1 rather than S-phase nuclei. While lamina depolymerization predominates early after fusion, at later times lamina is deposited around both the original metaphase and interphase nuclear masses and this is associated with the resumption of interphase activity in the form of limited DNA synthesis. These observations lead us to conclude that lamina depolymerization is under positive control mediated by diffusible factors in the cytoplasm of the metaphase partner. Repolymerization is likely to be associated with the inactivation of these factors as the heterokaryons age and, as a result, pass into an interphase-like state.  相似文献   

3.
We have perturbed the dynamics of the nuclear lamins by means of cell fusion between mitotic and interphase cells and have studied redistribution of lamins in fused cells as a function of extracellular pH levels. We show here that in heterophasic M-1 HeLa homokaryons disassembly of interphase lamins predominates at low pH levels between 7.0 to 7.3, whereas deposition of cytoplasmic lamins around condensed metaphase chromosomes was observed at pH 8.0. In HeLa homokaryons lamina disassembly and lamina deposition around chromosomes are mutually exclusive. Using heterophasic M-1 homokaryons of the Chinese hamster cell line DON we observed that disassembly of interphase lamins and deposition of lamins around condensed chromosomes coexisted in the same homokaryon kept at pH 7.0. Disassembly of lamins developed synchronously with premature chromosome condensation (PCC) whereas lamina deposition around the condensed M-chromosomes was followed by telophasing. In fusions kept at pH 8.0 cytoplasmic lamins were exclusively deposited around mitotic chromosomes. The results are interpreted as showing that pH regulates the lamina dynamics in homokaryons of mitotic and interphase cells.  相似文献   

4.
Summary Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two nonallelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco. Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia, Pennsylvania, June 7–10, 1976.  相似文献   

5.
Nucleolar behaviour in Triticum   总被引:1,自引:1,他引:0  
The maximum number of major nucleoli (macronucleoli) per nucleus of hexaploid, tetraploid and diploid wheat, Aegilops speltoides and Ae. squarrosa corresponded to the number of satellited chromosomes of each species. Smaller nucleoli (micronucleoli) were rare or absent in all of these species except the hexaploid, in which they were predominantly organized on chromosome arm 5Ds. — Fewer than the maximum number of macronucleoli in a mitotic interphase nucleus resulted from fusion of developing nucleoli. Enforced proximity of nucleolus-organizing regions resulted in more frequent fusion of nucleoli. — Analyses of related interphase nuclei showed that nucleoli, and hence probably chromosomes, undergo limited movement during mitotic interphase. These observations also indicate that specific chromosomes do not occupy specific sites in the interphase nucleus.  相似文献   

6.
F Constabel 《In vitro》1976,12(11):743-748
Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two non-allelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco.  相似文献   

7.
In fused interphase-mitotic cells, either interphase nuclei are induced to premature chromosome condensation (PCC) or mitotic chromosomes are induced to telophase-like nuclei (TLN) formation. This study concerns structural and functional changes in centrioles of fused cells in which PCC or TLN are induced. Embryonic pig kidney cells were fused using a modified PEG-DMSO-serum method. Cell cycle period of the nuclei was determined before cell fusion using double-labeling autoradiography. Polykaryons containing desirable type of PCC or interphase nuclear combination in TLN were selected on the basis of isotope labeling after being embedded in epon. Selected cells were cut into serial sections and studied under electron microscope. The data obtained showed that centrioles at every interphase period undergo mitotic activation when their nuclei are induced to PCC. They acquire fibrillar halo and form half-spindles. Daughter centrioles at G1, S and G2 periods are also capable of mitotic activation when separated from their mother centriole. Inert centrioles were found in some cells with G1-PCC. When mitotic nuclei are induced to TLN formation, their centrioles also become inactivated. They lose fibrillar halo and mitotic spindles break down. Some mitotic centrioles develop features characteristic of interphase period such as satellites and vacuoles. Induced nuclear and centriolar changes are simultaneous and may be controlled by the same factor. Mitotic factor of mitotic cell partner which induces PCC may also induce interphase centrioles to mitotic activation. Degradation of the mitotic factor leading to TLN formation may also cause the loss of the mitotic activity of centrioles and disorganization of mitotic spindles.  相似文献   

8.
The induction of premature chromosome condensation in an interphase cell immediately following fusion with a mitotic cell suggests the presence of factors in the mitotic cell that are responsible for the transformation of an interphase nucleus into prematurely condensed chromosomes (PCC). Several lines of evidence suggest that these factors are proteins present in the cytoplasm of mitotic cells. The objective of this study was to raise antibodies to the factors responsible for PCC. Cytosol from synchronized mitotic HeLa cells was injected into rabbits in order to obtain antiserum. The IgG fraction from this antiserum reacted with 98% of mitotic HeLa cells when tested by indirect immunofluorescence. Most of the fluorescence was localized on the chromosomes. About 5% of the interphase nuclei also reacted with the antiserum, but 50% of these cells were in early G1. Antigenic reactivity was induced in the condensing interphase chromatin in 31% of the interphase nuclei found in mitotic-interphase fused cells. Rodent cells did not react with the antibody by indirect immunofluorescence. Mitotic HeLa cells were able to induce antigenic reactivity in 23 % of interphase Chinese hamster ovary (CHO) cell nuclei in fused binucleate cells, whereas the converse was not true of mitotic CHO cells. Enzyme digestion and incubation with denaturing agents suggested that antigenic reactivity depended on a DNA-non-histone protein complex.  相似文献   

9.
Protoplasts from pea (Pisum sativum L.) leaves and cultured soybean (Glycine max L.) cells were fused by means of polyethylene glycol and subsequently cultured for one week. Both agglutinated protoplasts and cultured fusion products were examined by electron microscopy. Agglutination occurred over large areas of the plasma membranes. The membrane contanct was discontinuous and irregularly spaced. Many cultured fusion products regenerated cell walls and divided to form cell clusters. Fusion of pea and soybean interphase nuclei occurred in some cells. The detection of heterochromatin typical of pea in the synkaryon, even after division, suggests the cells were hybrids. The cytoplasm of the cells from the fusion products contained both soybean leucoplasts and pea chloroplasts. The chloroplasts had apparently ceased dividing and some showed signs of degenerating. Large multinucleate fusion products developed cell walls but failed to divide.Abbreviations PEG polyethylene glycol - SEM scanning electron microscopy - TEM transmission electron microscopy Supported by National Research Council of Canada, Grant A6304  相似文献   

10.
Summary Entomophthora muscae (C.) Fres. can be grownin vitro as protoplasts. Light and electron microscopical studies of thein vitro developed protoplasts have demonstrated the absence of an organized wall over the protoplasmic Con A-positive membrane at all stages of growth. The cytological organization is typical of the Entomophthorales with condensed chromatin in the interphase nuclei and small eccentric metaphase spindles. Long strands of endoplasmic reticulum, microubules and vesicles surrounding the plasmalemma may be involved in maintaining the precise shape ofE. muscae protoplast. Starvation of the fungus induces the formation of hyphal bodies after deposition of Con A- and WGA-positive wall material at the plasmalemma surface.Abbreviations Con A concanavalin A - DH Drosophila cell culture medium - FITC fluorescein isothiocyanate - GLEN glucose-lactal-bumin-yeast extract-NaCl culture medium for protoplasts - HBL hyphal body-like protoplasts - MM Mitsuhashi and Maramorosch' insect cell culture medium - PATAg periodic acid-thiocarbohydrazide-silver proteinate technique - PBN phosphate buffer with NaCl - S spherical protoplasts - WGA wheat germ agglutinin  相似文献   

11.
Summary Monoclonal antibodies were raised against germinal vesicles which were isolated from fully grown oocytes of the ascidianHalocynthia roretzi. Immunoblot analyses revealed that one of the antibodies, designated Hgv-2, recognized a single band with a molecular weight of about 83 kDa. The antibody, visualized by indirect immunohistochemistry, reacted only with the germinal vesicles of oocytes and did not react with test cells, follicle cells, and other somatic cells of the gonad. During embryogenesis the antigenicity was found in interphase nuclei of all embryonic cells. The antibody did not react with chromosomes or the mitotic apparatus. The antigenicity was retained by interphase nuclei of larval cells, but it disappeared from nuclei of juveniles about 7 days after metamorphosis.  相似文献   

12.
In two different cell fusion experiments a synchronized population of HeLa cells, prelabeled with 3H-TdR, was fused with an unlabeled one using inactivated Sendai virus. In the first experiment, HeLa cells in early G2 phase which were exposed to either 4 °C, cycloheximide, actinomycin D or X-irradiation were fused separately with untreated and more advanced G2 cells. A comparison of the rates of mitotic accumulation (in the presence of Colcemid) for the various classes of mono- and binucleate cells revealed that the hybrid (binucleate) cells were intermediate between those of the advanced and the retarded parental types indicating that the chromosome condensing factors of the advanced component were diluted as a result of such fusion. The manner in which the retarding effects of actinomycin D and cycloheximide were reversed in the hybrid cells suggested that proteins had a major role as chromosome condensing factors in the G2 mitotic transition. In the second experiment, when S phase HeLa cells were fused with those in G2, the resulting heterophasic (S/G2) binucleate cells reached mitosis at about the same time as the homophasic (S/S) cells of the lagging parent indicating a complete dominance of the S over the G2 with regard to their progress towards mitosis. However, the addition of Mg2+ (2 × 10?2 M of MgCl2) to the medium helped the G2 nuclei to enter mitosis asynchronously, which consequently induced premature chromosome condensation (PCC) in the S phase component. These data suggested that in the heterophasic (S/G2) binucleate cells the S phase component caused decondensation of the G2 chromatin thus blocking it from entering into mitosis. This effect which did not appear to be dose-dependent could be neutralized and the G2 nuclei relieved from this repression by an external supply of Mg2+ ions.  相似文献   

13.
INDUCTION OF PROPHASE IN INTERPHASE NUCLEI BY FUSION WITH METAPHASE CELLS   总被引:2,自引:7,他引:2  
Fusion of an interphase cell with a metaphase cell results in profound changes in the interphase chromatin that have been called "chromosome pulverization" or "premature chromosome condensation" In addition to the usual light microscopy, the nature of the changes has been investigated in the present study with electron microscopy and biochemical techniques Metaphase and interphase cells were mixed and fused at 37°C by means of ultraviolet-inactivated Sendai virus. After cell fusion, morphological changes in interphase nuclei occurred only in binucleate cells which contained one intact set of metaphase chromosomes Irrespective of the nuclear stage at the time of cell fusion, the morphologic changes that occurred 5–20 min later simulated very closely a sequence of events that characterizes the normal G2-prophase transition. Radioautography revealed that, late in the process, substantial amounts of RNA and probably protein were transferred from the interphase nucleus into the cytoplasm of fused cells. Thus, the findings indicate the existence in metaphase cells of factor(s) which are capable of initiating biochemical and morphological events in interphase nuclei intrinsic to the normal mitotic process.  相似文献   

14.
Cases of asynchronous progression with separate nuclei of S-period and initial mitotic stages in multinucleate cells were discovered in Chinese hamster cell cultures during a prolonged action of cytochalasin B (7 days) and after its stopping (7 days of cell cultivation without drug). The interphase asynchrony under experimental conditions vary in value corresponding to the level of interphase asynchrony in spontaneous multinucleate cells in control cultures. So, the interphase asynchrony in cytochalasin B-induced multinucleate cells is suggested not to be connected with the drug action. Fusion of heterophase cells and a high level of proliferation activity of multinucleate cells seem to be the main reason of interphase asynchrony both in control cultures and in experimental conditions. Unlike the interphase asynchrony, the appearance of the mitotic asynchrony in multinucleate cells is shown to be connected with the action of cytochalasin B. The high level of the mitotic asynchrony remains after the stopping of drug action. A conclusion is made that mitotic asynchrony of nuclei, along with multipolar mitosis and cytokinesis inhibition, is one more display of the cytotoxic action of cytochalasin B on mitosis.  相似文献   

15.
Summary Isolated protoplasts of Vicia faba and Petunia hybrida have been fused by the action of Ca++, high pH and, occasionally, PEG. The heterokaryotic stage frequently endured mitotic divisions. Only one cell was found with apparently fusing nuclei. Another heterokaryon showed asynchronous phases in the nuclear cycle. Three hybrid tissues have been identified 50 and 60 days after fusion. One of them could be propagated, is 9 months old and still rapidly proliferating. The fusion hybrids contained predominantly nuclei or chromosomes of one or the other species and a few chromosomes of the second parent. These observations were assigned to chromosome elimination which has been conclusively seen in cells containing nuclei of Petunia-type and one or two chromosomes of Vicia left in the cytoplasm. Breakage of chromosomes was the only type of chromosome mutations found in hybrid tissue.Dedicated with compliments to Professor Dr. Josef Straub on the occasion of his 67th birthday and the 17th anniversary of his directorship within the 50 years of history of the Erwin-Baur-Institut (Max-Planck-Institut für Züchtungsforschung)  相似文献   

16.
Intergeneric somatic hybridization was performed between albino maize (Zea mays L.) protoplasts and mesophyll protoplasts of wheat (Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.  相似文献   

17.
The relationship between histone phosphorylation and chromosome condensation was investigated by determining changes in phosphorylation levels of histones H1 and H3 following fusion between mitotic and interphase cells and subsequent premature chromosome condensation. We detected significant increases in the levels of phosphorylation of H1 and H3 from interphase chromatin in which a majority of nuclei had undergone premature chromosome condensation. In addition, we noted significant decreases in the phosphate content of the highly phosphorylated mitotic H1 and H3, presumably resulting from phosphatase activity contributed by the interphase component of mitotic/interphase fused cells. These observations further strengthen the correlation between histone phosphorylation and the changes in chromosome condensation associated with the initiation of mitosis. This study also suggests that maintenance of the mitotic chromosomes in a highly condensed state does not require the continued presence of histones in a highly phosphorylated form.  相似文献   

18.
The kinetics of isthmal cells in mouse antrum were examined in three ways: the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; the duration of interphase and mitotic phases was determined from how frequently they occurred; and mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis. The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively. From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurrence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr. Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase. We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

19.
Recent findings including computerised live imaging suggest that polyploidy cells transiently emerging after severe genotoxic stress (and named 'endopolyploid cells') may have a role in tumour regrowth after anti-cancer treatment. Until now, mostly the factors enabling metaphase were studied in them. Here we investigate the mitotic activities and the role of Aurora-B, in view of potential depolyploidisation of these cells, because Aurora-B kinase is responsible for coordination and completion of mitosis. We observed that endopolyploid giant cells are formed via different means in irradiated p53 tumours, by: (1) division/fusion of daughter cells creating early multi-nucleated cells; (2) asynchronous division/fusion of sub-nuclei of these multi-nucleated cells; (3) a series of polyploidising mitoses reverting replicative interphase from aborted metaphase and forming giant cells with a single nucleus; (4) micronucleation of arrested metaphases enclosing genome fragments; or (5) incomplete division in the multi-polar mitoses forming late multi-nucleated giant cells. We also observed that these activities can release para-diploid cells, although infrequently. While apoptosis typically occurs after a substantial delay in these cells, we also found that approximately 2% of the endopolyploid cells evade apoptosis and senescence arrest and continue some form of mitotic activity. We describe here that catalytically active Aurora-B kinase is expressed in the nuclei of many endopolyploid cells in interphase, as well as being present at the centromeres, mitotic spindle and cleavage furrow during their attempted mitotes. The totally micronucleated giant cells (containing sub-genomic fragments in multiple micronuclei) represented only the minor fraction which failed to undergo mitosis, and Aurora-B was absent from it. These observations suggest that most endopolyploid tumour cells are not reproductively inert and that Aurora-B may contribute to the establishment of resistant tumours post-irradiation.  相似文献   

20.
Hybrid HeLa cells formed by the fusion of mitotic with interphase cells have been used as a test system to study the effects of various positively and negatively charged compounds on the induction of premature chromosome condensation (PCC) of the interphase nuclei. Among the various positively charged compounds tested, spermine, putrescine and Mg++ were specific in promoting the PCC induction while spermidine was unique in inhibiting this event. All the negatively charged compounds including estradiol-17β were uniformly inhibitory. The inhibitory effect of estradiol was reversed by putrescine. The inhibition of PCC induction by estradiol seems to be due to its binding to interphase chromatin rather than to the PCC inducers. The differences between the polyamines in their effects on the PCC inducing system has been explained on the basis of their abilities to bind stereospecifically with chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号