首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
STAT1 mediates response to interferons and regulates immunity, cell proliferation, apoptosis, and sensitivity of Fanconi Anemia cells to apoptosis after interferon signaling; the roles of STAT1 in embryos, however, are not understood. To explore embryonic functions of STAT1, we investigated stat1b, an unstudied zebrafish co-ortholog of human STAT1. Zebrafish stat1a encodes all five domains of the human STAT1-alpha splice form but, like the human STAT1-beta splice variant, stat1b lacks a complete transactivation domain; thus, two unlinked zebrafish paralogs encode protein forms translated from two splice variants of a single human gene, as expected by sub-functionalization after genome duplication. Phylogenetic and conserved synteny studies showed that stat1b and stat1a arose as duplicates in the teleost genome duplication (TGD) and clarified the evolutionary origin of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 by tandem and genome duplication. RT-PCR revealed maternal expression of stat1a and stat1b. In situ hybridization detected stat1b but not stat1a expression in embryonic hematopoietic tissues. Morpholino knockdown of stat1b, but not stat1a, decreased expression of the myeloid and granulocyte markers spi and mpo and increased expression of the hematopoietic progenitor marker scl, the erythrocyte marker gata1, and hemoglobin. These results suggest that zebrafish Stat1b promotes myeloid development at the expense of erythroid development.  相似文献   

3.

Background

The lymphatic vascular system, draining interstitial fluids from most tissues and organs, exerts crucial functions in several physiological and pathological processes. Lymphatic system development depends on Prox1, the first marker to be expressed in the endothelial cells of the cardinal vein from where lymph vessels originate. Prox1 ortholog in the optically clear, easily manipulated zebrafish model has been previously isolated and its contribution to lymphangiogenesis has been clarified. Because of a round of genome duplication occurred at the base of teleosts radiation, several zebrafish genes have been retained in duplicate through evolution. We investigated for the presence of additional prox1 genes and determined their role in zebrafish lymphangiogenesis.

Methodology/Principal Findings

We isolated a second ortholog, named prox1b, and analyzed its expression during development by whole mount in situ hybridization (WISH). We detected strong prox1b expression in the endothelium of the posterior cardinal vein (PCV) from where lymphatic precursors originate. To analyze prox1b involvement in lymphangiogenesis we utilized the fli1:GFP transgenics and followed the formation of the toracic duct (TD), the primary lymph vessel in fish, after prox1b knockdown. Our findings clearly demonstrated that the absence of prox1b activity severely hampers the formation of the TD.

Conclusions/Significance

This work provides substantial progress toward the understanding of zebrafish lymphangiogenesis. In light of the features shared by the lymphatic systems of zebrafish and higher vertebrates, the establishment of such lymphatic model will provide a powerful tool to study, for instance, disorders of body fluid homeostasis, inflammation and cancer metastasis, and may ultimately contribute to novel therapies.  相似文献   

4.
NudE-Like (NDEL1/NUDEL), through its interaction with LIS1 and DISC1, has been implicated in the etiology of neurological disorders such as lissencephaly and schizophrenia, respectively. Subsequently, a large portion of the research done on the function of NDEL1 has been specifically targeted to its role in brain development while ignoring its function in other developing and adult tissues. To begin a more global exploration of NDEL1's function, this study characterizes the developmental expression pattern of the NDEL1 orthologs in the zebrafish embryo. Our bioinformatic analyses identified two NDEL1 orthologs in the zebrafish, ndel1a and ndel1b. ndel1a is expressed predominantly in the anterior central nervous system (CNS), trigeminal ganglia, and eyes while ndel1b is expressed in the developing somites and, later, in the CNS. In addition to the spatial differences in their expression patterns, these genes are also individually regulated in their temporal expression. Both are expressed maternally but at later time-points there are subtle differences. ndel1a expression is lost between 6 and 12 hpf but then increases to a higher, near steady state, level from 72 to 120 hpf. ndel1b expression decreases from 3 to 36 hpf and subsequently increases from 36 to 120 hpf. The non-overlapping expression patterns of these two orthologs may indicate that they have split the functional role of the one NDEL1 gene present in mammalian species. The temporal and spatial regulation of these two orthologs will aid in the characterization of the multiple functions of this gene in both the developing and mature organism.  相似文献   

5.
Transient receptor potential (TRP) genes encode subunits that form cation-selective ion channels in a variety of organisms and cell types. TRP channels serve diverse functions ranging from thermal, tactile, taste, and osmolar sensing to fluid flow sensing. TRPC1 and TRPC6 belong to the TRPC subfamily, members of which are thought to contribute to several cellular events such as regulated migration of neuronal dendrites, contractile responses of smooth muscle cells and maintenance of the structural integrity of kidney podocytes. Pathogenic roles have been suggested for TRPC1 in asthma and chronic obstructive pulmonary disease, and TRPC6 dysfunction was recently linked to proteinuric kidney disease. To explore the potential roles for TRPC channels in zebrafish organ function, we cloned zebrafish trpC1 and trpC6 cDNAs, and investigated their expression during zebrafish development. We detected trpC1 expression in the head, in cells surrounding the outflow tract of the heart, and in the ganglion cells as well as the inner nuclear layer of the eye. trpC6 expression was detected in the head, pectoral fins, aortic endothelial cells, and gastrointestinal smooth muscle cells. Our results point to roles of TRPC channels in several tissues during zebrafish development, and suggest that the zebrafish may be a suitable model system to study the pathophysiology of TRPC1 and TRPC6 in specific cell types.  相似文献   

6.
7.
F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate.  相似文献   

8.
Nodal‐signaling is required for specification of mesoderm, endoderm, establishing left–right asymmetry, and craniofacial development. Wdr68 is a WD40‐repeat domain‐containing protein recently shown to be required for endothelin‐1 (edn1) expression and subsequent lower jaw development. Previous reports detected the Wdr68 protein in multiprotein complexes containing mammalian members of the dual‐specificity tyrosine‐regulated kinase (dyrk) family. Here we describe the characterization of the zebrafish dyrk1b homolog. We report the detection of a physical interaction between Dyrk1b and Wdr68. We also found perturbations of nodal signaling in dyrk1b antisense morpholino knockdown (dyrk1b‐MO) animals. Specifically, we found reduced expression of lft1 and lft2 (lft1/2) during gastrulation and a near complete loss of the later asymmetric lft1/2 expression domains. Although wdr68‐MO animals did not display lft1/2 expression defects during gastrulation, they displayed a near complete loss of the later asymmetric lft1/2 expression domains. While expression of ndr1 was not substantially effected during gastrulation, ndr2 expression was moderately reduced in dyrk1b‐MO animals. Analysis of additional downstream components of the nodal signaling pathway in dyrk1b‐MO animals revealed modestly expanded expression of the dorsal axial mesoderm marker gsc while the pan‐mesodermal marker bik was largely unaffected. The endodermal markers cas and sox17 were also moderately reduced in dyrk1b‐MO animals. Notably, and similar to defects previously reported for wdr68 mutant animals, we also found reduced expression of the pharyngeal pouch marker edn1 in dyrk1b‐MO animals. Taken together, these data reveal a role for dyrk1b in endoderm formation and craniofacial patterning in the zebrafish. genesis 48:20–30, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
李艳欢  吴新荣 《生物学杂志》2010,27(3):53-55,87
克隆斑马鱼基质金属蛋白酶11b(MMP11b)基因,并研究其在斑马鱼胚胎早期发育中的时空表达状况。收集不同发育时期的斑马鱼胚胎,制备DIG标记的MMP11b RNA探针,采用全胚胎原位杂交方法研究MMP11b基因在斑马鱼胚胎的表达。MMP11b基因在胚胎受精后一个细胞时期就开始表达,并且一直持续到96h,从受精后24h起,在耳囊处表达明显,在受精后48h时期在胸鳍和肛门处也有特异性表达。MMP11b在斑马鱼胚胎发育不同时期表达明显,且在耳囊处有持续表达。  相似文献   

10.
11.
12.
13.
14.
15.
16.
Anosmin-1, encoded by the KAL-1 gene, is the protein defective in the X-linked form of Kallmann syndrome. This human developmental disorder is characterized by defects in cell migration and axon target selection. Anosmin-1 is an extracellular matrix protein that plays a role, in vitro, in processes such as cell adhesion, neurite outgrowth, axon guidance, and axon branching. The zebrafish possesses two orthologues of the KAL-1 gene: kal1a and kal1b, which encode anosmin-1a and anosmin-1b, respectively. Previous in situ hybridization studies have shown that kal1a and kal1b mRNAs are expressed in undetermined cells of the inner ear but not in neuromast cells. Using specific antibodies against anosmin-1a and anosmin-1b, we report here that both proteins are expressed in sensory hair cells of the inner ear cristae ampullaris and the lateral line neuromasts. Accumulation of these proteins was observed mainly at the level of the hair bundle and also at the cell membrane. In neuromast hair cells, immunogold scanning electronmicroscopy demonstrated that anosmin-1a and anosmin-1b were present at the surface of the stereociliary bundle. In addition, anosmin-1a, but not anosmin-1b, was detected on the track of the ampullary nerve. This is the first report of anosmin-1 expression in sensory hair cells of the inner ear and lateral line, and along the ampullary nerve track.  相似文献   

17.
18.
Neurohypophysial peptides are important regulators of homeostasis, reproduction and behavior. We have sequenced a zebrafish cDNA representing isotocin-neurophysin (IT-NP) mRNA. The developmental expression pattern of zebrafish IT-NP mRNA was determined by whole-mount in situ hybridization histochemistry. At 32 h post fertilization (hpf) no IT-NP mRNA is detected. However, by 36 hpf, staining for IT-NP mRNA is detected in a tight bilateral cluster of cells located in the anterior hypothalamus. The IT-NP mRNA expression pattern remains remarkably stable throughout further development at least until 120 hpf.  相似文献   

19.
20.
The zebrafish, (Danio rerio) is an important model organism for the analysis of molecular mechanisms that govern neuronal circuit development. The neuronal circuitry that mediates olfaction is crucial for the development and survival of all teleost fishes. In concert with other sensory systems, olfaction is functional at early stages in zebrafish development and mediates important behavioral and survival strategies in the developing larva. Odorant cues are transduced by an array of signaling molecules from receptors in olfactory sensory neurons. The scaffolding protein family known as Homer is well placed to orchestrate this signaling cascade by interacting with and coupling membrane bound receptors to cytosolic signaling partners. To date, Homer has not been demonstrated in the zebrafish. Here we report that the Homer 1b/c isoform was prominent in the olfactory system from the earliest stages of differentiation. We describe the spatial and temporal distribution of Homer in the zebrafish olfactory system. At 24 hours post fertilization (hpf), Homer expression delineated the boundary of the presumptive olfactory placode. Subsequent expression steadily increased throughout the developing olfactory placode, with a prominent localization to the dendritic knobs of the olfactory sensory neurons. Homer expression in the developing olfactory bulb was punctate and prominent in the glomeruli, displaying an apparent synaptic localization. This work supports the hypothesis that Homer is an important molecule in neuronal circuit development, necessary for crucial behaviors required for development and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号