首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollinator syndrome is one of the most important determinants regulating pollen dispersal in tropical tree species. It has been widely accepted that the reproduction of tropical forest species, especially dipterocarps that rely on insects with weak flight for their pollination, is positively density-dependent. However differences in pollinator syndrome should affect pollen dispersal patterns and, consequently, influence genetic diversity via the mating process. We examined the pollen dispersal pattern and mating system of Shorea maxwelliana, the flowers of which are larger than those of Shorea species belonging to section Mutica which are thought to be pollinated by thrips (weak flyers). A Bayesian mating model based on the paternity of seeds collected from mother trees during sporadic and mass flowering events revealed that the estimated pollen dispersal kernel and average pollen dispersal distance were similar for both flowering events. This evidence suggests that the putative pollinators – small beetles and weevils – effectively contribute to pollen dispersal and help to maintain a high outcrossing rate even during sporadic flowering events. However, the reduction in pollen donors during a sporadic event results in a reduction in effective pollen donors, which should lead to lower genetic diversity in the next generation derived from seeds produced during such an event. Although sporadic flowering has been considered less effective for outcrossing in Shorea species that depend on thrips for their pollination, effective pollen dispersal by the small beetles and weevils ensures outcrossing during periods of low flowering tree density, as occurs in a sporadic flowering event.  相似文献   

2.
Polymorphic allozyme loci were used to estimate outcrossing rates for three tree species from a disturbed dry forest in southern Costa Rica. Estimates of the multilocus outcrossing rates of Cedrela odorata and Jacaranda copaia were 0.969 and 0.982, respectively, and suggest that these species may be self-incompatible. The subcanopy tree Stemmadenia donnell-smithii also demonstrated little self-fertilization based on an estimated outcrossing rate of 0.896. Significant heterogeneity in pollen allele frequencies among maternal trees was detected for at least two enzyme loci for each species. A test of correlated mating between progeny of S. donnell-smithii revealed that all seeds within a fruit were singly sired. In addition, the low estimates of biparental inbreeding and significant differences in pollen and ovule allele frequencies for this species suggest that gene flow into the sampled forest fragment may occur. The implications of deforestation on the mating systems of these tropical tree taxa are discussed.  相似文献   

3.
Susan M. House 《Oecologia》1993,96(4):555-561
Pollination success in female trees was determined for a population of Neolitsea dealbata (R. Br.) Merr., a locally abundant dioecious tree pollinated by small, unspecialized insects in northern Queensland rain forest, Australia. The population consisted of a clustered group of trees with a mean male-to-female distance of 4.5 m and more isolated individuals, including females more than 90 m away from the nearest pollen source. A map of all reproductive trees was produced to determine accurate male-to-female distances. The size of the pollen source available to females was defined as a function of the distance to the nearest ten male trees and their sizes (male neighbourhood index). The rate of pollen movement to females was measured by counting pollen tubes (and the number of tubes per style) in female trees 6 days after the commencement of population flowering. The pollination rate decreased steeply to less than half when the nearest male was only 6.5 m away. Although pollen reached a female 330 m away from the nearest pollen source, only 10% of receptive flowers had been pollinated. The short flowering period (2–3 weeks) combined with the the slow rate of pollen movement means that a large proportion of flowers in isolated trees are unpollinated, confirming an earlier finding that isolated females set fewer fruits than gregarious females. The reliability of pollen transfer to females was determined by quantifying insects and their pollen loads trapped at female trees with a range of male neighbourhood indices. Quantities of insects and pollen were significantly correlated with the size of the male neighbourhood index, indicating a strong density-dependent response by vectors to flowering. Pollen was also collected from insect visitors to non-flowering trees. Females with large male neighbourhood indices received more pollen than non-flowering trees with equivalent male neighbourhood indices. However, when the male neighbourhood indices were small for both female and non-flowering trees, the changces of pollinators encountering female and non-flowering trees were similar, suggesting random movements of pollinators in sparse-flowering sub-populations. The dioecious breeding system, brief, synchronous flowering period, clustered population structure and random, opportunistic foraging behaviour of vectors interacted in a way that reduced reproduction in relatively isolated trees. These results demonstrate a mechanism for differential breeding success between trees in natural populations and emphasize the possible impact of logging regimes on pollen flow between trees. Large interconspecific distances in species-rich environments may have been a factor in the selection for synchronous flowering between trees in outcrossing tree species with generalist insect pollinators.  相似文献   

4.
Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker-Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200-750 m) populations showed significant genetic differentiation (Fst 0.11-0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03-0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus.  相似文献   

5.
Summary A multilocus mixed mating model was used to analyze the mating systems of two tropical canopy trees in the Bombacaceae that differ in successional status and overall abundance. One population of each species was studied on Barro Colorado Island, Republic of Panama. Population outcrossing estimates of 0.57 and 0.35 from two years indicate a mixed-mating system with intermediate outcrossing levels for the gap-specialist Cavanillesia platanifolia, a relatively rare component of the island flora. Population and individual outcrossing estimates were associated with flowering tree density or degree of spatial isolation. Trees within clusters of flowering individuals have a higher degree of outcrossing than isolated trees. Annual estimates of individual tree outcrossing rates varied greatly as a function of flowering in its nearest neighbors. In contrast to C. platanifolia, Quararibea asterolepis was completely outcrossed and may be self incompatible. Maternal trees of both species had significantly heterogeneous pollen pools indicating non-random outcrossing. Apomixis by sporophytic agamospermy was rejected in C. platanifolia as contributing to the apparent selfing rate.  相似文献   

6.
We studied the breeding systems of four populations of Enterolobium cyclocarpum (guanacaste, earpod tree) in Costa Rica. Multilocus estimates of the outcrossing rate indicate that E. cyclocarpum is a predominant outcrossing species (t(m) ranged between 0.881 and 0.901) and biparental inbreeding is low (range between 0.058 and 0.079). Overall, our analyses showed significant differences in the gene frequencies between pollen and ovules and significant differences in pollen gene frequencies between the four populations. We also found significant differences in the pollen gene frequencies calculated for single trees in the same population. Outcrossing rates and pollen gene frequencies varied in two consecutive years in two populations of E. cyclocarpum. The correlated mating model revealed that there are differences in the correlation of paternity between populations and years. These findings indicate that there is variation in the average number of trees that father the seed crop of each tree and/or that some fathers are overrepresented in the seed crop of each tree. The implication of these findings for the development of strategies for conservation and management of this species are discussed.  相似文献   

7.
Tropical trees are generally long-lived making it difficult to assess the long-term effects of habitat fragmentation on genetic diversity. Maintenance of genetic diversity in fragmented landscapes is largely dependent on the species’ mating system and the degree of genetic connectivity (seed and pollen flow) among fragments. Currently, these parameters are largely unknown for many endangered tropical tree species. Additionally, landscape fragmentation may isolate tropical tree populations from larger, more continuous populations. The role of isolated individuals in pollen transfer within and between remnant populations is not clear. In this study, we estimate the mating system and pollen flow patterns in continuous and remnant populations of the endangered tropical tree Guaiacum sanctum (Zygophyllaceae). Fractional paternity analyses were used to estimate average gene flow distances between fragmented remnant populations and the siring success of an intermediately located, but isolated individual. In these populations, G. sanctum is a mixed-mating species (t m = 0.72 − 0.95) whose pollen is transported over large distances (>4 km). An isolated tree may have functioned as a stepping-stone between two clusters of individuals, assisting long-distance pollen movement. This individual also sired a disproportionately high number of seeds (13.9%), and is thus an important component of the reproductive success of these populations, thus rejecting Janzen’s “living-dead” hypothesis. The high levels of genetic diversity maintained as a consequence of long-distance pollen-flow suggest that this endangered species may have the potential for future adaptation and population expansion if suitable habitats become available.  相似文献   

8.
In most higher plants sexual interactions are mediated by animal pollinators that affect the number and differential reproductive success of mates. The number and sex of breeding individuals in populations are central factors in evolutionary theory, but the quantitative effect of plant population size on pollinator-mediated mating is understudied. We investigated variation in pollen removal (male function) and fruit set (female function) among flowering populations of different size of two bumblebee-and one butterfly-pollinated, rewardless, pollen-limited, hermaphroditic orchid species in Sweden. As the amount of pollen removed from plants by insects (either absolute or proportional) increased, so did the number of pollinations, whereas the proportions of plants with different pollinator-designated functional sex (male, female, hermaphrodite) depended primarily on the ratio between the amount of fruit set and pollen removed within populations. A larger population size was found to have several effects: (1) the total numbers of pollinia removed and fruits set increased; (2) the proportion of pollen removed from plants decreased; (3) the proportion of flowers pollinated decreased in the butterfly-but was not affected in the bumblebee-pollinated species; (4) the ratio between fruits set and pollinia removed increased linearly in the bumblebee-pollinated species but reached a maximum at c. 80 individuals in the butterfly-pollinated species; (5) the numbers of pollinator-designated pure male and hermaphrodite individuals increased; and (6) the variance in pollinium removal, but not fruit set, increased among individuals. These findings empirically verify the basic importance of population size for the mating structure of outcrossing plants, and indicate that selection for female sexual traits is reinforced when population size is smaller while selection for male sexual traits is reinforced when population size is larger.  相似文献   

9.
Ceiba pentandra is a tropical tree with high rates of selfing in some populations. In mixed‐mating species, variation in selfing is due to changes in adult density or variability of incompatibility systems. The effect of spatial isolation and phenology on selfing rates and pollen flow distances was analyzed using microsatellites in a fragmented population of Ceiba pentandra, in southern Costa Rica. Adult trees within a heterogeneous landscape were classified as grouped or isolated. We compared selfing rates at the individual level, between isolation conditions and 2 yr (2007, 2009), which differed in the number of flowering individuals. Mixed mating was estimated in both years (tm = 0.624–0.759). Trees mated predominantly by outcrossing, while only a few trees reproduced through selfing. Spatial isolation did not significantly affect outcrossing rates. The progeny of grouped trees was mostly sired by near‐neighbors (<1 km) and by long‐distance pollen flow events in isolated trees. A reduction in the number of flowering individuals in 2009 reduced near‐neighbor matings, increased selfing in grouped trees, and decreased the number of unsampled sires in the progeny. Comparing selfing rates on individuals that flowered in both reproductive periods suggests a flexible mating system. Variation in self‐fertilization rates in this population appears to depend on variation of individual traits, such as genetic variability in self‐incompatibility genes, but it is independent of landscape heterogeneity. In contrast, pollen flow distances depend on local tree density as bats concentrate their foraging between near individuals to maximize energy efficiency.  相似文献   

10.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

11.
Both pollen and seed dispersal components of gene flow were examined in the annual plant Chamaecrista fasciculata (Leguminosae) and quantified in terms of Wright's neighborhood area. Pollen dispersal was estimated by measuring pollinator flight movement throughout the flowering season and the contribution of pollen carryover to pollen dispersal was determined by comparing pollinator flight movement with dispersal of electrophoretic markers in an experimental transect. Phenological effects on the probability of fruit set were measured to determine whether pollinations should be weighted differentially across the flowering season. The outcrossing rate, a major determinant of the role of pollen dispersal in gene flow, was estimated from electrophoretic analysis of progeny arrays and by measuring the proportion of nongeitonogamous pollinator flight movements. Seed dispersal was measured in a prairie habitat and in experimental plots without surrounding vegetation. Seed dispersal was small in comparison to pollen dispersal in both environments. Fruit set was low at the beginning and end of the flowering season, periods when flower density is low and pollinator flight distances are large. Although the outcrossing rate was high (t = 80%) and pollen carryover substantial, pollen dispersal was limited. Averaged over 4 years, neighborhood area, based on both seed and pollen dispersal, was 17.6 m2, and corresponds to a circle of radius 2.4 m. The observed limited gene dispersal suggests the population of C. fasciculata is genetically subdivided into small breeding units of related individuals.  相似文献   

12.
This study measured the quantities of effective pollen vectors and their pollen loads arriving at the canopies of dioecious tropical rain forest trees in north-east Queensland. Population flowering synchrony, effective pollinator populations and pollen loads transferred between staminate and pistillate trees were compared among three insect-pollinated tree species. All three were visited by a wide range of insects, 75% of which (mostly 3–6 mm long) carried conspecific pollen. Fewer than 8% of individual insects were found to be carrying single-species pollen exclusively and none could be described as specialist pollen foragers. The introduced honeybee carried greater quantities of pollen than any native species but was not necessarily a reliable pollinator. The brief flowering periods in Neolitsea dealbata (3–4 weeks) and Litsea leefeana (4–5 weeks) populations were synchronized among individuals. Flowering in the Diospyros pentamera population extended over 15 weeks and most individuals were in flower for most of this period. Staminate trees began flowering earlier, produced more flowers and attracted relatively more insects than did pistillate trees, suggesting a density-dependent response of pollinators to flowering performance. Pollen was trapped in greater quantities on insects at staminate trees than at pistillate trees. Insect numbers increased at peak flowering periods and Diptera were the most abundant flower visitors. Anthophilous Coleoptera were more numerous at staminate than at pistillate trees in all three tree species populations. Larger quantities of pollen were mobilized during peak flowering times although the greatest quantities were transferred to pistillate canopies towards the end of the population flowering periods. Diptera carried pollen more often to pistillate N. dealbata and L. leefeana trees than did other groups whereas Coleoptera carried pollen more often to pistillate D. pentamera trees. The two contrasting flowering performances in the three tree species are discussed with reference to mechanisms that facilitate pollen transfer between staminate and pistillate trees.  相似文献   

13.
Braga AC  Collevatti RG 《Heredity》2011,106(6):911-919
Variation among flowering seasons in the time of flowering, synchrony and length of flowering, and fluctuations in the abundance of pollinators may cause a variation in pollen dispersal distance. In this study, we analyzed the temporal variation in pollen dispersal and breeding structure in the Neotropical tree species Tabebuia aurea (Bignoniaceae) and evaluated pollen dispersal between a population inside the reserve and a patch of isolated individuals on the edge of the reserve, and tested the hypothesis that isolated individuals are sinking for pollen. All adult trees (260) within a population of 40 ha and 9 isolated individuals on the edge of the reserve were sampled, and from these adults, 21 open-pollinated progeny arrays were analyzed in 2 flowering seasons (309 seeds in 2004 and 328 in 2005). Genetic analyses were based on the polymorphism at 10 microsatellite loci. A high proportion of self-pollination found in both flowering seasons indicated a mixed-mating system. The mean pollen dispersal distance differed significantly between the two flowering seasons (307.78 m in 2004 and 396.26 m in 2005). Maximum pollen dispersal was 2608 m, but most pollination events (65%) occurred at distances <300 m. Our results also showed that isolated individuals are sinking for pollen, with high pollen flow between the population inside the reserve and individuals on the edge. These results are most likely due to the large pollinator species, which can potentially fly long distances, and also due to temporal variation in individual fecundity and contribution to pollen dispersal.  相似文献   

14.
Mangrove tree species form ecologically and economically important forests along the tropical and subtropical coastlines of the world. Although low intrapopulation genetic diversity and high interpopulation genetic differentiation have been detected in most mangrove tree species, no direct investigation of pollen and propagule dispersal through paternity and/or parentage analysis and spatial genetic structure within populations has been conducted. We surveyed the mating system, pollen and propagule dispersal, and spatial genetic structure in a natural population of Kandelia candel, one of the typical viviparous mangrove tree species, using nuclear and chloroplast microsatellite markers. High diversity and outcrossing rates were observed. Paternity and parentage analysis and modelling estimations revealed the presence of an extremely short-distance component of pollen and propagule dispersal (pollen: 15.2 ± 14.9 m (SD) by paternity analysis and 34.4 m by modelling; propagule: 9.4 ± 13.8 m (SD) by parentage analysis, and 18.6 m by modelling). Genetic structure was significant at short distances, and a clumped distribution of chloroplast microsatellite genotypes was seen in K. candel adults. We conclude that the K. candel population was initiated by limited propagule founders from outside by long-distance dispersal followed by limited propagule dispersal from the founders, resulting in a half-sib family structure.  相似文献   

15.
山莨菪(茄科)的传粉生物学   总被引:1,自引:0,他引:1  
茄科的多数种类具有自交不亲和的特点, 主要通过异花传粉结实; 但是, 一些物种或者物种内的部分种群或者个体却高度自交亲合, 转变为自交的繁育系统。该科植物山莨菪(Anisodus tanguticus)主要分布在青藏高原, 开花较早, 比其他晚开花的植物种类更加缺少有效的异花传粉昆虫。我们选择了位于不同海拔高度的2个种群进行比较研究, 主要目的是检验该物种的繁育系统是否在极端环境下由于传粉者的缺乏而发生了部分改变。研究发现,山莨菪的花不完全雌性先熟, 柱头和花药间的平均距离随着花开放时间的延长而不断缩小, 但两者在多数花的单花花期结束时并没有发生接触。因此, 山莨菪花主要表现为适应异花传粉的雌雄异位特征。然而, 少数花 (4.9%)的柱头和花药发生接触, 为“自动自交”的传粉解除了空间隔离。2个种群的多数个体存在自交不亲和机制, 应具有异花传粉的繁育系统; 但是部分个体具有明显的自交亲和能力, 为自交提供了生理基础。高海拔种群的传粉昆虫主要是厕蝇(Fannia sp.), 它们在不同植株间的活动能够保证异花传粉结实; 同时该种群的部分个体存在“自动自交”。低海拔种群的主要访花昆虫是蚂蚁, 它们在花内的活动导致花粉在同一朵花内传递, 而引起“协助自交”; 而异花传粉昆虫厕蝇的访花频率则较高海拔种群低。两个种群的结实均由于异花传粉者不足而受到传粉限制。因此两种不同类型的自交机制为该早期开花植物异花访花昆虫的不足提供了一定程度上的繁殖补偿。  相似文献   

16.
Recent studies suggest that tropical tree species exhibit low inbreeding and high gene dispersal levels despite the typically low density of conspecifics in tropical forests. To examine this, we undertook a study of pollen gene dispersal and mating system of two Amazonian tree species. We analyzed 341 seeds from 33 trees at four microsatellite loci in a Carapa guianensis population from Brazil, and 212 seeds from 22 trees at four microsatellite loci in a Sextonia rubra population from French Guiana. Differentiation of allele frequencies among the pollen pool of individual trees was ΦFT= 0.053 (95% CI: 0.027–0.074) for C. guianensis and ΦFT= 0.064 (95% CI: 0.017–0.088) for S. rubra. The mean pollen dispersal distances were estimated at 69–355 m for C. guianensis , and 86–303 m for S. rubra , depending on the pollen dispersal model and the estimate of reproductive tree density used. The multi-locus outcrossing rate was estimated at 0.918 and 0.945, and the correlation of paternity at 0.089 and 0.096, for C. guianensis and S. rubra , respectively, while no significant levels of biparental inbreeding were detected. Comparing trees with high and low local density of conspecifics, we found no evidence for differences in inbreeding levels. The results are discussed within the framework of the emerging picture of the reproductive biology of tropical forest trees.  相似文献   

17.
Canopy tree species are the dominant elements of the species-rich, fragile and endangered tropical rain forest ecosystems, yet little is known about the genetics of these species. We provide an estimate of the outcrossing rate in a population of Pithecellobium pedicellare, a large canopy tree in the tropical rain forests of Costa Rica. The outcrossing rate was high (t = 951 ± 0.021) and the pollen pool contributing to the progeny arrays used to measure outcrossing rate showed departure from homogeneity. The high outcrossing rate indicates that individuals scattered over a large area in this low density population could be bound with each other via outcrossing. However, despite a high outcrossing rate, the potential for inbreeding in this population is not negligible. We found a relatively large number of albino and chlorotic seedlings among the progeny arrays of several seed parents. Heterogeneity of pollen pool further indicates that the population, though widely outcrossed, may be structured. A more detailed study of mating systems in tropical rain forest trees may provide additional insights into the mating patterns of these trees. Such studies will be useful not only in understanding the dynamics of micro-evolutionary processes, but also in the conservation and management of tropical forest trees.  相似文献   

18.
吕文  刘文哲 《植物学报》2010,45(6):713-722
从开花动态、传粉昆虫、花的形态结构、繁育系统、花粉活力和柱头可授性等方面研究了我国特有珍稀植物瘿椒树(Tapiscia sinensis Oliv.)的传粉生物学特性。瘿椒树是典型的雄全异株植物,两性花中含有功能性花粉,且自交亲和,但雄花花粉活力和萌发力是两性花的10倍以上。雄株和两性植株具有相同开花物候期,花期均为5月下旬至6月上旬,单花期为4-5天,雄花和两性花的5枚花药开裂的不同步性明显延长了散粉时间。两性花雌蕊先熟,柱头可授性较长。具有适应风媒和虫媒传粉的花部特征。传粉昆虫主要为蜜蜂科(Apidae)和食蚜蝇科(Syrphidae)昆虫,访花高峰期为8:30-10:30。维持瘿椒树雄全异株的可能机制是:雄株总体上增加了异交花粉的数量和质量;两性花的雄蕊为该物种提供了繁殖保障,同时为传粉者提供了报酬。  相似文献   

19.
吕文  刘文哲 《植物学通报》2010,45(6):713-722
从开花动态、传粉昆虫、花的形态结构、繁育系统、花粉活力和柱头可授性等方面研究了我国特有珍稀植物瘿椒树(Tapiscia sinensis Oliv.)的传粉生物学特性。瘿椒树是典型的雄全异株植物,两性花中含有功能性花粉,且自交亲和,但雄花花粉活力和萌发力是两性花的10倍以上。雄株和两性植株具有相同开花物候期,花期均为5月下旬至6月上旬,单花期为4-5天,雄花和两性花的5枚花药开裂的不同步性明显延长了散粉时间。两性花雌蕊先熟,柱头可授性较长。具有适应风媒和虫媒传粉的花部特征。传粉昆虫主要为蜜蜂科(Apidae)和食蚜蝇科(Syrphidae)昆虫,访花高峰期为8:30-10:30。维持瘿椒树雄全异株的可能机制是:雄株总体上增加了异交花粉的数量和质量;两性花的雄蕊为该物种提供了繁殖保障,同时为传粉者提供了报酬。  相似文献   

20.
Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号