首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Despite the fact that migration occurs in a wide variety of taxa worldwide, little is known about the conditions under which migration is expected to evolve from an ancestral resident population. We develop a model that focuses on ecological factors affecting the evolution of migration in a seasonal environment within a genetically explicit framework. We model the evolution of migration for two common types of migration: ‘shared breeding where migrants share a breeding ground with residents and migrate to a separate non-breeding area, versus ‘shared non-breeding’, where migrants share a non-breeding ground with residents and migrate to a separate breeding area. Ecologically, migration is more easily established in the shared-breeding case versus the shared-non-breeding case. Genetically, the additive effect of a migratory allele affects its establishment more in the shared-non-breeding case versus the shared-breeding case, whereas the dominance effect of the allele affects its establishment more in the shared-breeding case versus the shared-non-breeding case. Generally, migratory alleles can invade even when residents are competitively superior to migrants during the shared season. Partial migration occurs when the population is polymorphic for migratory and non-migratory alleles, and is dependent upon which season is shared and the additive and dominance behaviour of the migratory allele.  相似文献   

3.
Abstract. Selection for the capacity for prolonged tethered flight in Spodoptera exempta resulted in heavier moths, with significantly larger abdominal glyceride glycerol contents in females of two flight-selected strains (87% and 49% higher than in the comparable non-selected strain) and in males of one of them (80% higher). All flight-selected strains contained individuals of both sexes with very high abdominal glyceride levels. There was no significant relationship between abdominal total glyceride glycerol after flight and flight duration for non-selected moths, but an inverse linear relationship was evident in both sexes from a flight-selected strain. Oxygen consumption during tethered flights by flight-selected moths ranged from 28.2 to 56.6 ml O2g-1h-1.
Using these and previous data, notional energy budgets were calculated to account for flight, reproduction and resting metabolism for non-selected and flight-selected S. exempta flown on the flight balances and provided thereafter with distilled water. The results confirm the trade-off between flight and reproduction reported by Gunn et al. (1989). A similar approach using data for two non-selected strains from the field in Kenya indicated genetic variation in migratory potential, reflected both in pre-reproductive period and resources available for flight. We conclude that elevated glyceride levels are a component of the migratory syndrome in S. exempta and that this is the major factor underlying the curvilinear relationship between flight duration and fecundity obtained by Gunn et al. (1989).  相似文献   

4.
蚜虫迁飞的研究进展   总被引:15,自引:2,他引:15  
蚜虫的迁飞能造成危害扩展、病毒病传播和防碍人们的正常生活。蚜虫迁飞有其生理生态基础。寄主营养、蚜群拥挤度、天敌以及气候条件是刺激有翅蚜产生的主因素。蚜虫迁飞与卵巢发育存在明显的共轭关系。蚜虫迁飞多发生在晴朗的白天 ,并且温度、光照和风是影响迁飞行为的主导因子。蚜虫可上升到逆温层并随气流迁飞到上百公里以外的地方。目前 ,昆虫雷达观察、天气学分析和分子生物学方法已应用于蚜虫迁学的研究中 ,文章对蚜虫迁飞的生理生态基础、迁飞行为、影响迁飞的生态因子以及研究方法进行了综述 ,以期为蚜虫这类小型昆虫的迁飞研究提供指导  相似文献   

5.
Although, in some insect taxa, wing shape is remarkably invariant, the wings of Anisopteran dragonflies show considerable variation among genera. Because wing shape largely determines the high energetic costs of flight, it may be expected that interspecific differences are partly due to selection. In the present study, we examined the roles of long-distance migration and high-manoeuvrability mate guarding in shaping dragonfly wings, using a phylogeny-based comparative method, and geometric morphometrics to quantify wing shape. The results obtained show that migration affects the shape of both front and hind wings, and suggest that mate guarding behaviour may also have an effect, especially on the front wing. These effects on front wing shape are at least partly independent. Our findings are interesting when compared with the geographically widespread and ecologically diverse dipterans Acalyptratae (including the genus Drosophila ). The wings in that group are similar in function and structure, but show strikingly low levels of interspecific variation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 362–372.  相似文献   

6.
ABSTRACT. Flight durations of tethered female Anticarsia gemmatalis moths recorded in the laboratory were interpreted by Wales et al. as indicating a capacity for significant inter-reproductive displacements in the field. Indications that their data may not support this conclusion are discussed and evidence is presented that, in tethered Spodoptera exempta , prolonged flights starting early in the night represent migratory behaviour while those of similar durations starting after midnight do not.  相似文献   

7.
We censused butterflies flying across the Panama Canal at Barro Colorado Island (BCI) for 16 years and butterfly hostplants for 8 years to address the question: What environmental factors influence the timing and magnitude of migrating Aphrissa statira butterflies? The peak migration date was earlier when the wet season began earlier and when soil moisture content in the dry season preceding the migration was higher. The peak migration date was also positively associated with peak leaf flushing of one hostplant (Callichlamys latifolia) but not another (Xylophragma seemannianum). The quantity of migrants was correlated with the El Niño Southern Oscillation, which influenced April soil moisture on BCI and total rainfall in the dry season. Both hostplant species responded to El Niño with greater leaf flushing, and the number of adults deriving from or laying eggs on those new leaves was greatest during El Niño years. The year 1993 was exceptional in that the number of butterflies migrating was lower than predicted by the El Niño event, yet the dry season was unusually wet for an El Niño year as well. Thus, dry season rainfall appears to be a primary driver of larval food production and population outbreaks for A. statira. Understanding how global climate cycles and local weather influence tropical insect migrations improves the predictability of ecological effects of climate change.  相似文献   

8.
Abstract. 1. The hypothesis that the migratory tendency of macropters is correlated with proportion macropterous in wing-polymorphic insects is tested by comparing the migration of macropters of three species of waterstriders (Heteroptera, Gerridae) under natural conditions.
2. Migration of marked individuals among four permanent and seventeen ephemeral water bodies was recorded between 1 April 1986 and 2 June 1987, within an area of approximately 2 km2.
3. The proportion of macropters migrating was significantly lower for G.buenoi Kirkaldy than for L.dissortis Drake and Harris and G.comatus Drake and Hottes. Similar results were obtained in. comparisons of proportions captured on ephemeral sites.
4. Distances measured in this study appear to be small relative to the migratory capacity of all of the species, and migration distance did not differ significantly among species. All species migrated primarily in early spring, and differences among species were most apparent at this time.
5. The observed differences among species combined with the results of a similar study of macropters from the primarily apterous species, G.remigis Say, support the initial hypothesis. The implications of this for our understanding of the evolution and maintenance of wing polymorphisms are discussed.  相似文献   

9.
10.
This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.  相似文献   

11.
Aim We explore whether molecular phylogeny and biogeography can complement evolutionary ecology in developing a method to address a long-standing issue in the evolution of migration: have migrations between breeding and non-breeding grounds, which may be on different continents, evolved through origins in the breeding grounds with successive shifts of the non-breeding distribution or vice versa? Methods To accommodate the biology of migration, we treated breeding and non-breeding distributions as characters to be mapped onto a phylogeny derived from mitochondrial DNA sequence data and so examined the ancestral home issue as a study in the direction of character evolution. Results Our main findings from applying this approach to a subset of the Charadrius complex of shorebirds (Aves: Charadriinae) are that a case can be made for shifts of breeding distributions having occurred in the ancestries of C. alexandrinus and C. veredus as those species evolved their present migration patterns. Our results also argue for a southern hemisphere origin (specifically South America) for the Charadrius complex as a whole. A South American origin implies other shifts in breeding distributions having occurred in the evolution of the species C. semipalmatus and C. vociferus. On applying the methods we developed for dealing with phylogenetic uncertainty, these results are reinforced and the merit of testing them further is suggested. Conclusions By way of a new approach to the evolution of migration, our study adds to a consensus emerging from the evolutionary ecology of migrant birds, arguing that shifts of breeding distributions are commonly, though not necessarily exclusively, involved in the evolution of migration.  相似文献   

12.
An international workshop on animal migration was held at the Lorentz Center in Leiden, The Netherlands, 2–6 March 2009, bringing together leading theoreticians and empiricists from the major migratory taxa, aiming at the identification of cutting-edge questions in migration research that cross taxonomic borders.  相似文献   

13.
ABSTRACT.   Previous studies using thermal imaging cameras (TI) have used target size as an indicator of target altitude when radar was not available, but this approach may lead to errors if birds that differ greatly in size are actually flying at the same altitude. To overcome this potential difficulty and obtain more accurate measures of the flight altitudes and numbers of individual migrants, we have developed a technique that combines a vertically pointed stationary radar beam and a vertically pointed thermal imaging camera (VERTRAD/TI). The TI provides accurate counts of the birds passing through a fixed, circular sampling area in the TI display, and the radar provides accurate data on their flight altitudes. We analyzed samples of VERTRAD/TI video data collected during nocturnal fall migration in 2000 and 2003 and during the arrival of spring trans-Gulf migration during the daytime in 2003. We used a video peak store (VPS) to make time exposures of target tracks in the video record of the TI and developed criteria to distinguish birds, foraging bats, and insects based on characteristics of the tracks in the VPS images and the altitude of the targets. The TI worked equally well during daytime and nighttime observations and best when skies were clear, because thermal radiance from cloud heat often obscured targets. The VERTRAD/TI system, though costly, is a valuable tool for measuring accurate bird migration traffic rates (the number of birds crossing 1609.34 m [1 statute mile] of front per hour) for different altitudinal strata above 25 m. The technique can be used to estimate the potential risk of migrating birds colliding with man-made obstacles of various heights (e.g., communication and broadcast towers and wind turbines)—a subject of increasing importance to conservation biologists.  相似文献   

14.
During migration, a number of bird species rely on stopover sites for resting and feeding before and after crossing ecological barriers such as deserts or seas. The duration of a stopover depends on the combined effects of environmental factors, endogenous programmes and physiological conditions. Previous studies indicated that lean birds prolong their refuelling stopover compared with fat birds; however, the quantitative relationship between physiological conditions and stopover behaviour has not been studied yet. Here, we tested in a large sample of free-living birds of three European passerines (whinchats, Saxicola rubetra, garden warblers, Sylvia borin and whitethroats, Sylvia communis) whether the amount of migratory restlessness (Zugunruhe) shown at a stopover site depends on physiological conditions. An integrated measure of condition based on body mass, amount of subcutaneous fat and thickness of pectoral muscles strongly predicted the intensity of Zugunruhe shown in recording cages in the night following capture. These results provide novel and robust quantitative evidence in support of the hypothesis that the amount of energy reserves plays a major role in determining the stopover duration in migratory birds.  相似文献   

15.
16.
The aerodynamic interactions between the body and the wings of a model insect in forward flight and maneuvers are studied using the method of numerically solving the Navier-Stokes equations over moving overset grids. Three cases are considered, including a complete insect, wing pair only and body only. By comparing the results of these cases, the interaction effect between the body and the wing pair can be identified. The changes in the force and moment coefficients of the wing pair due to the presence of the body are less than 4.5% of the mean vertical force coefficient of the model insect; the changes in the aerodynamic force coefficients of the body due to the presence of the wings are less than 5.0% of the mean vertical force coefficient of the model insect. The results of this paper indicate that in studying the aerodynamics and flight dynamics of a flapping insect in forward flight or maneuver, separately computing (or measuring) the aerodynamic forces and moments on the wing pair and on the body could be a good approximation.  相似文献   

17.
Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop–escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival.  相似文献   

18.
Migration is an energetically expensive and hazardous stage of the annual cycle of non‐resident avian species, and requires certain morphological adaptations. Wing shape is one of the morphological traits that is expected to be evolutionarily shaped by migration. Aerodynamic theory predicts that long‐distance migrants should have more pointed wings with distal primaries relatively longer than proximal primaries, an arrangement that minimizes induced drag and wing inertia, but this prediction has mostly been tested in passerine species. We applied the comparative method of phylogenetically independent contrasts to assess convergent evolution between wing shape and migration within shorebirds. We confirmed the assumption that long‐distance migrants have less rounded wings than species migrating shorter distances. Furthermore, wing roundedness negatively correlates with fat load and mean distance of migratory flights, the basic components of migration strategies. After controlling for interspecific differences in body size, we found no support for a link between wing length and migration, indicating that wing shape is a more important predictor of shorebird migratory behaviour than wing length. The results suggest that total migration distance and migratory strategy may simultaneously act on the evolution of wing shape in shorebirds, and possibly in other avian species.  相似文献   

19.
The movement of 34 large (39–73 cm standard length) brown trout Salmo trutta was monitored using radio telemetry for up to 74 days in Brumunda, a small Norwegian river (mean annual discharge 3·3 m3 s−1) flowing into the large Lake Mjøsa. The maximum range of movement in the river was 20 km. No clear relationships existed between individual movement and water discharge, temperature and barometric pressure. Brown trout migrated at all levels of water discharge. At low discharge (<2 m3 s−1) movements were nocturnal. A weir 5·3 km from the outlet restricted ascending brown trout at low ( c . 6° C), but not at high ( c . 8° C) water temperatures. Spawning occurred in September to October and tagged individuals spent 2–51 days at the spawning sites. Mean migration speed from tagging to when the fish reached the spawning area, and from when they left the spawning areas and reached the lake was 1·0 and 2·3 km day−1, respectively. All tagged brown trout that survived spawning returned to the lake after spawning.  相似文献   

20.
Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade?1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号