首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of methods have been used to enumerate Cryptosporidium parvum oocysts from source or drinking waters. The reliability of these counting methods varies, in part, with suspension density, sample purity, and other factors. Frequently, the method of determination of suspension density is not reported by authors. To confound the problem, each method of counting has large inherent variation. There is a relationship between suspension density, overall number of organisms counted, and counting mechanism accuracy that should be accounted for when selecting a counting mechanism. This study selected a maximum acceptable coefficient of variation (CV) to be 10%. A method was considered unreliable if this standard was not achieved. Flow cytometry achieved this standard at 486 oocysts/ml. Counting with a Coulter counter achieved this level of reliability at about 1,230 oocysts/ml. Neither chamber slides nor fluorescent antibody-stained well slides ever demonstrated less than 10% CV. However, estimates of the minimum required concentrations were 5,100 oocysts/ml and approximately 6,500 oocysts/ml, respectively. The hemacytometer provided counts accurate to a 10% CV at a concentration of at least 60,000 organisms/ml. Of the methods tested, flow cytometry provided the least amount of variability at low suspension densities.  相似文献   

2.
Six genera of rotifers including Philodina, Monostyla, Epiphanes, Euchlanis, Brachionus, and Asplanchna were exposed to oocysts of Cryptosporidium parvum cleaned of fecal debris. Unstained oocysts and those stained with fluorescein-conjugated monoclonal antibody were added to suspensions of viable rotifers and were examined by phase-contrast, differential interference contrast, and fluorescence microscopy. Rotifers of all six genera were observed ingesting oocysts. A maximum of 25 oocysts was observed in the stomachs of Eauchlanis and Brachionus. Euchlanis and Epiphanes were observed excreting boluses containing up to eight oocysts. It was not determined whether rotifers digested or otherwise rendered oocysts nonviable.  相似文献   

3.
4.
Purified oocysts of Cryptosporidium parvum suspended in approximately 400 microliters of phosphate-buffered saline or deionized water in microcentrifuge tubes were exposed at 21 to 23 degrees C for 24 h to a saturated atmosphere of ammonia, carbon monoxide, ethylene oxide, formaldehyde, or methyl bromide gas. Controls were exposed to air. Oocysts in each tube were then rinsed and resuspended in fresh, deionized water, and 1 million oocysts exposed to each gas were orally administered to each of three to six neonatal BALB/c mice in replicate groups. Histologic sections of ileum, cecum, and colon tissues taken from each mouse 72 h after oral administration of oocysts were examined microscopically to determine if infection had been established. All 15 mice given oocysts exposed to carbon monoxide had numerous developmental stages of cryptosporidium in all three intestinal segments. Of 10 mice given oocysts exposed to formaldehyde, 6 had a few developmental stages of cryptosporidium in the ileum. No mice given oocysts exposed to ammonia, ethylene oxide, or methyl bromide were found to be infected. These findings indicate the efficacy of these low-molecular-weight gases (ammonia, ethylene oxide, and methyl bromide) as potential disinfectants for C. parvum oocysts where soil, rooms, buildings, tools, or instruments might be contaminated.  相似文献   

5.
Infectious Cryptosporidium parvum oocysts in final reclaimed effluent   总被引:2,自引:0,他引:2  
Water samples collected throughout several reclamation facilities were analyzed for the presence of infectious Cryptosporidium parvum by the focus detection method-most-probable-number cell culture technique. Results revealed the presence of infectious C. parvum oocysts in 40% of the final disinfected effluent samples. Sampled effluent contained on average seven infectious oocysts per 100 liters. Thus, reclaimed water is not pathogen free but contains infectious C. parvum.  相似文献   

6.
Solar radiation reduces Cryptosporidium infectivity. Biofilms grown from stream microbial assemblages inoculated with oocysts were exposed to solar radiation. The infectivity of oocysts attached at the biofilm surface and oocysts suspended in water was about half that of oocysts attached at the base of a 32-μm biofilm.  相似文献   

7.
This study was undertaken to investigate the cryopreservation of Cryptosporidium parvum oocysts. Oocysts purified from mouse feces were suspended in distilled water, 10% glycerin, and 2.5% potassium dichromate. They were stored at -20 C and -80 C for 2, 7, and 30 days, respectively. In addition to the purified oocysts, the feces of C. parvum-infected mice were preserved under the same conditions described above. Purified and fecal oocysts were thawed at 4 C, and their viability was assessed by a nucleic acid stain, excystation test, tissue culture infectivity test, and infectivity to immunosuppressed adult mice. Oocysts purified from fecal material prior to cryopreservation lost most of their viability and all of their infectivity for tissue culture and mice. However, when oocysts were cryopreserved in feces, between 11.7 and 34.0% were judged to be viable and retained their infectivity for mice when stored at -20 C (but not -80 C) for 2, 7, and 30 days. Clearly, fecal material provides a cryoprotective environment for C. parvum oocysts stored at -20 C for at least 30 days.  相似文献   

8.
Abstract The present study was undertaken to determine the infectivity of Cryptosporidium parvum oocysts for immunosup-pressed adult C57BL/6N mice after the oocysts had been stored from 1–48 months at 4°C in 2.5% potassium dichromate. All mice inoculated with oocysts 1–18 months old developed patent infections, while mice inoculated with older oocysts remained uninfected. The prepatent period was extended from 2 to 6 or 7 days as the storage time for oocysts increased. The finding that C. parvum oocysts remain infective for mice for at least 18 months offers important economic and time-saving advantages for investigators who frequently require large numbers of oocysts that must be painstakingly purified from calf manure.  相似文献   

9.
Cryptosporidium is a genus of apicomplexan parasites that inhabit the respiratory and gastrointestinal tracts of vertebrates. Research of these parasites is limited by a lack of model hosts. This study aimed to determine the extent to which infection at the embryo stage can enhance the propagation of Cryptosporidium oocysts in chickens. Nine-day-old chicken embryos and one-day-old chickens were experimentally infected with different doses of Cryptosporidium baileyi and Cryptosporidium parvum oocysts. Post hatching, all chickens had demonstrable infections, and the infection dose had no effect on the course of infection. Chickens infected as embryos shed oocysts immediately after hatching and shed significantly more oocysts over the course of the infection than chickens infected as one-day-olds. In chickens infected as embryos, C. baileyi was found in all organs except the brain whereas, C. parvum was only found in the gastrointestinal tract and trachea. In chickens infected as one-day-olds, C. baileyi was only found in the gastrointestinal tract and trachea. Chickens infected as embryos with C. baileyi died within 16 days of hatching. All other chickens cleared the infection. Infection of chickens as embryos could be used as an effective and simple model for the propagation of C. baileyi and C. parvum.  相似文献   

10.
Cryptosporidium parvum is known as one of the most highly resistant parasites to gamma irradiation. To morphologically have an insight on the radioresistance of this parasite, ultrastructural changes in C. parvum sporozoites were observed after gamma irradiation using various doses (1, 5, 10, and 25 kGy) following a range of post-irradiation incubation times (10 kGy for 6, 12, 24, 48, 72, and 96 hr). The ultrastructures of C. parvum oocysts changed remarkably after a 10-kGy irradiation. Nuclear membrane changes and degranulation of dense granules were observed with high doses over 10 kGy, and morphological changes in micronemes and rhoptries were observed with very high doses over 25 kGy. Oocyst walls were not affected by irradiation, whereas the internal structures of sporozoites degenerated completely 96 hr post-irradiation using a dose of 10 kGy. From this study, morphological evidence of radioresistance of C. parvum has been supplemented.  相似文献   

11.
Detection of viable Cryptosporidium parvum oocysts by PCR.   总被引:4,自引:3,他引:1       下载免费PDF全文
PCR was used to detect and specifically identify a gene fragment from Cryptosporidium parvum. An 873-bp region of a 2,359-bp DNA fragment encoding a repetitive oocyst protein of C. parvum was shown to be specifically amplified in C. parvum. An excystation protocol before DNA extraction allowed the differentiation between live and dead Cryptosporidium parvum oocysts.  相似文献   

12.
Cryptosporidium parvum oocysts in drinking water have been implicated in outbreaks of diarrheal disease. Current methods for monitoring environmental exposures to C. parvum only account for total number of oocysts without regard for the viability of the parasite. Measurement of oocyst viability, as indicated by an oocyst's ability to excyst, is useful because over time oocysts lose the ability to excyst and become noninfective. Thus, correlating the number of viable oocysts in drinking water with incidence and risk for disease should be more reliable than using the total number of oocysts. We have developed a quantitative assay capable of detecting low numbers of excystable, sporozoite-releasing C. parvum oocysts in turbid water samples. Monoclonal (CP7) and polyclonal antibodies have been developed against a sporozoite antigen released only during excystation or when the oocyst is mechanically disrupted. CP7 is specific for C. parvum and does not react with C. baileyi, C. muris, C. serpentis, Giardia spp., Eimeria spp., or E. nieschulzi. In this assay, oocysts in the test sample are first excysted and then centrifuged. The soluble sporozoite antigen is captured by CP7 attached to a magnetic bead. The captured antigen is then detected by ruthenium-labeled polyclonal antibodies via electrochemiluminescence. The CP7 viability assay can detect as few as 50 viable oocysts in a 1-ml assay sample with a turbidity as high as 200 Nephelometric turbidity units. This sensitive, turbidity-tolerant assay for oocyst viability may permit a better assessment of the disease risk associated with the presence of environmental oocysts.  相似文献   

13.
Abstract In vitro excystation, vital dyes (4', 6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)), and infeictivity in neonatal CD-1 mice were used to assess the viability of Cryptosporidium parvum oocysts after chemical disinfection. In vitro excystation and DAPI/PI staining provided similar estimates of viability in bench-scale experiments, but both of these methods significantly overestimated the viability when compared with infectivity (Pr ≤ 0.01). Infectivity was the most reliable measure of the viability of C. parvum oocysts following chemical disinfection.  相似文献   

14.
To evaluate the effectiveness of UV irradiation in inactivating Cryptosporidium parvum oocysts, the animal infectivities and excystation abilities of oocysts that had been exposed to various UV doses were determined. Infectivity decreased exponentially as the UV dose increased, and the required dose for a 2-log(10) reduction in infectivity (99% inactivation) was approximately 1.0 mWs/cm(2) at 20 degrees C. However, C. parvum oocysts exhibited high resistance to UV irradiation, requiring an extremely high dose of 230 mWs/cm(2) for a 2-log(10) reduction in excystation, which was used to assess viability. Moreover, the excystation ability exhibited only slight decreases at UV doses below 100 mWs/cm(2). Thus, UV treatment resulted in oocysts that were able to excyst but not infect. The effects of temperature and UV intensity on the UV dose requirement were also studied. The results showed that for every 10 degrees C reduction in water temperature, the increase in the UV irradiation dose required for a 2-log(10) reduction in infectivity was only 7%, and for every 10-fold increase in intensity, the dose increase was only 8%. In addition, the potential of oocysts to recover infectivity and to repair UV-induced injury (pyrimidine dimers) in DNA by photoreactivation and dark repair was investigated. There was no recovery in infectivity following treatment by fluorescent-light irradiation or storage in darkness. In contrast, UV-induced pyrimidine dimers in the DNA were apparently repaired by both photoreactivation and dark repair, as determined by endonuclease-sensitive site assay. However, the recovery rate was different in each process. Given these results, the effects of UV irradiation on C. parvum oocysts as determined by animal infectivity can conclusively be considered irreversible.  相似文献   

15.
Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4',6'-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection.  相似文献   

16.
17.
Recovery of oocysts of Cryptosporidium parvum using 142 mm diameter 1.2 μm pore size acrylic copolymer membrane filters was evaluated. A mean recovery efficiency of 25.5% for oocyst concentrations of about 200 in 10 1 was achieved, making this method a simple and relatively efficient procedure compared with current standard methods.  相似文献   

18.
Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.  相似文献   

19.
The survival of various isolates of Cryptosporidium parvum oocysts under a range of environmental pressures including freezing, desiccation, and water treatment processes and in physical environments commonly associated with oocysts such as feces and various water types was monitored. Oocyst viability was assessed by in vitro excystation and by a viability assay based on the exclusion or inclusion of two fluorogenic vital dyes. Although desiccation was found to be lethal, a small proportion of oocysts were able to withstand exposure to temperatures as low as -22 degrees C. The water treatment processes investigated did not affect the survival of oocysts when pH was corrected. However, contact with lime, ferric sulfate, or alum had a significant impact on oocyst survival if the pH was not corrected. Oocysts demonstrated longevity in all water types investigated, including seawater, and when in contact with feces were considered to develop an enhanced impermeability to small molecules which might increase the robustness of the oocysts when exposed to environmental pressures.  相似文献   

20.
The survival of various isolates of Cryptosporidium parvum oocysts under a range of environmental pressures including freezing, desiccation, and water treatment processes and in physical environments commonly associated with oocysts such as feces and various water types was monitored. Oocyst viability was assessed by in vitro excystation and by a viability assay based on the exclusion or inclusion of two fluorogenic vital dyes. Although desiccation was found to be lethal, a small proportion of oocysts were able to withstand exposure to temperatures as low as -22 degrees C. The water treatment processes investigated did not affect the survival of oocysts when pH was corrected. However, contact with lime, ferric sulfate, or alum had a significant impact on oocyst survival if the pH was not corrected. Oocysts demonstrated longevity in all water types investigated, including seawater, and when in contact with feces were considered to develop an enhanced impermeability to small molecules which might increase the robustness of the oocysts when exposed to environmental pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号