首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo expression technology (IVET) has resulted in the isolation of more than 100 Salmonella typhimurium genes that are induced during infection. Many of these in vivo induced (ivi) genes, as well as other virulence genes, are clustered in regions of the chromosome that are specific for Salmonella and are not present in Escherichia coli (e.g., pathogenicity islands). It would be desirable to be able to delete such putative virulence regions of the chromosome, and if the deletion removes genes that play a role in pathogenesis subsequent efforts can then be focused on individual genes that reside within that region. We therefore have developed a strategy for constructing chromosomal deletions which are not limited in size, have defined endpoints with a selectable marker at the joint point, and are not dependent on prior knowledge of sequences contained within the deleted region. Such deletion strategies can be applied to almost any bacterium with homologous recombination and to plasmid-based mutational systems where homologous recombination is not desired or feasible. Received: 6 October 1997 / Accepted: 30 December 1997  相似文献   

2.
Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing ′ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, ′bglM (β-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem.  相似文献   

3.
Integrative conjugative elements (ICEs) occur frequently in Gram‐positive and Gram‐negative bacteria. In contrast to plasmids, they are stably integrated in the bacterial genome, often inserted in a tRNA gene. They are excised from the host chromosome upon induction in order to be transferred to a recipient cell. When conjugative transfer is completed, they stably reintegrate in the chromosome. It is generally thought that ICEs are incapable of autonomous replication, instead relying on replication and segregation along with the host chromosome. In this issue of Molecular Microbiology Lee and co‐workers demonstrate that ICEBs1 from Bacillus subtilis is capable of autonomous plasmid‐like replication in its circular form after excision. The authors show that ICEBs1 replication is unidirectional; it initiates at oriTICEBs1 and requires the ICEBs1‐encoded conjugative relaxase NicK. Replication also requires the catalytic subunit of the host DNA polymerase PolC, the host processivity clamp DnaN and the host‐encoded alternative helicase PcrA. Autonomous replication of ICEBs1 appears to be important for its stable maintenance, but not for horizontal transfer of the element. Lee and co‐workers argue that plasmid‐like replication is likely a common property of ICEs, probably contributing to stability and maintenance of ICEs in bacterial populations. I discuss these findings in context with data on other ICEs from Gram‐positive and Gram‐negative bacteria and with respect to possible consequences of the findings for basic research on mobile genetic elements from Gram‐positive bacteria and their applications in biotechnology.  相似文献   

4.
5.
6.
Broad host range gene transfer: plasmids and conjugative transposons   总被引:2,自引:0,他引:2  
Abstract Conjugation is the primary route of broad host range DNA transfer between different genera of bacteria. Plasmids are the most familiar conjugative elements, but there are also self-transmissible integrated elements called conjugative transposons. Conjugative transposons have been found in many genera of gram-positive bacteria, in mycoplasmas and in gram negative bacteria such as Bacteriodes spp. and Moraxella spp., and they have a very broad host range. The best-studied conjugative transposons are: the ones related to Tn 916 , a 16 kb conjugative transposon found originally in Gram-positive bacteria; Tn 5276 , a 70 kb conjugative transposon from Lactococcus lactis ; and a group of large (> 70 kb) conjugative transposons found in Bacteroides spp. Transfer of conjugative transposons takes place in three steps: excision to form a circular intermediate, transfer of one strand of the circular intermediate to a recipient, and integration into the recipient genome. Some conjugative transposons integrate almost randomly, whereas other integrate site-specifically. Conjugative transposons not only transfer themselves but also mobilize co-resident plasmids, either by providing transfer functions in trans or by inserting themselves into the plasmid. In addition, the conjugative transposons found in Bacteroides spp. can excise and mobilize unlinked integrated elements, called NBUs. Transfer of many of the Bacteroides conjugative transposons is regulated by tetracycline, whereas transfer of Tn 916 and other conjugative transposons appears to be constitutive. The conjugative transposons are clearly widespread in clinical isolates, but their distribution in environmental isolates remains to be determined.  相似文献   

7.
Levin BR 《PLoS genetics》2010,6(10):e1001171
Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR) abound in the genomes of almost all archaebacteria and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these sequences. Thus it would seem that protection against infecting phage and plasmids is the selection pressure responsible for establishing and maintaining CRISPR in bacterial populations. But is it? To address this question and provide a framework and hypotheses for the experimental study of the ecology and evolution of CRISPR, I use mathematical models of the population dynamics of CRISPR-encoding bacteria with lytic phage and conjugative plasmids. The results of the numerical (computer simulation) analysis of the properties of these models with parameters in the ranges estimated for Escherichia coli and its phage and conjugative plasmids indicate: (1) In the presence of lytic phage there are broad conditions where bacteria with CRISPR-mediated immunity will have an advantage in competition with non-CRISPR bacteria with otherwise higher Malthusian fitness. (2) These conditions for the existence of CRISPR are narrower when there is envelope resistance to the phage. (3) While there are situations where CRISPR-mediated immunity can provide bacteria an advantage in competition with higher Malthusian fitness bacteria bearing deleterious conjugative plasmids, the conditions for this to obtain are relatively narrow and the intensity of selection favoring CRISPR weak. The parameters of these models can be independently estimated, the assumption behind their construction validated, and the hypotheses generated from the analysis of their properties tested in experimental populations of bacteria with lytic phage and conjugative plasmids. I suggest protocols for estimating these parameters and outline the design of experiments to evaluate the validity of these models and test these hypotheses.  相似文献   

8.
Conjugative Plasmid Transfer in Gram-Positive Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

9.
Bacillus thuringiensis is an insect pathogen used worldwide as a bioinsecticide. It belongs to the Bacillus cereus sensu lato group as well as Bacillus anthracis and B. cereus. Plasmids from this group of organisms have been implicated in pathogenicity as they carry the genes responsible for different types of diseases that affect mammals and insects. Some plasmids, like pAW63 and pBT9727, encode a functional conjugation machinery allowing them to be transferred to a recipient cell. They also share extensive homology with the non-functional conjugation apparatus of pXO2 from B. anthracis. In this study we report the complete sequence of three plasmids from an environmental B. thuringiensis isolate from Argentina, obtained by a shotgun sequencing method. We obtained the complete nucleotide sequence of plasmids pFR12 (12 095 bp), pFR12.5 (12 459 bp) and pFR55 (55 712 bp) from B. thuringiensis INTA-FR7-4. pFR12 and pFR12.5 were classified as cryptic as they do not code for any obvious functions besides replication and mobilization. Both small plasmids were classified as RCR plasmids due to similarities with the replicases they encode. Plasmid pFR55 showed a structural organization similar to that observed for plasmids pAW63, pBT9727 and pXO2. pFR55 also shares a tra region with these plasmids, containing genes related to T4SS and conjugation. A comparison between pFR55 and conjugative plasmids led to the postulation that pFR55 is a conjugative plasmid. Genes related to replication functions in pFR55 are different to those described for plasmids with known complete sequences. pFR55 is the first completely sequenced plasmid with a replication machinery related to that of ori44. The analysis of the complete sequence of plasmids from an environmental isolate of B. thuringiensis permitted the identification of a near complete conjugation apparatus in pFR55, resembling those of plasmids pAW63, pBT9727 and pXO2. The availability of this sequence is a step forward in the study of the molecular basis of the conjugative process in Gram positive bacteria, particularly due to the similarity with known conjugation systems. It is also a contribution to the expansion of the non-pathogenic B. cereus plasmid gene pool.  相似文献   

10.
Establishment of a system for manipulative genetics in phototrophic sulfur bacteria of the family Chromatiaceae has mainly been hampered by the lack of reliable methods for growth of these organisms on agar surfaces, techniques for streaking, growth on selective media, screening for antibiotic resistance markers, and most importantly by the lack of a system for DNA transfer. We, therefore, developed minimal and complex agar media for Chromatium vinosum strain D (DSM 180T), a representative of the purple sulfur bacteria. Sensitivity of C. vinosum towards a broad range of antibiotics was tested in liquid cultures and solidified media, allowing us to select appropriate antibiotic resistance markers. Furthermore, a system for conjugative transfer of IncP-mobilizable plasmids from Escherichia coli to C. vinosum was established. Broad-host-range IncQ vectors were mobilized to C. vinosum with the aid of plasmid RP4 either present extrachromosomally or integrated in the chromosome of E. coli S17-1. Conjugation efficiencies of up to 1 were observed. Agarose gel electrophoretic analysis showed that transconjugants contained the transferred plasmids in addition to the two detectable plasmids of wild-type C. vinosum. All genetic markers tested (kanamycin, gentamicin, ampicillin, amikacin, tetracycline) were expressed in C. vinosum. Furthermore, high-frequency transfer of plasmid RP4 from C. vinosum to E. coli and to Rhodospirillum rubrum K100 was demonstrated. Received: 3 March 1995 / Accepted: 22 May 1995  相似文献   

11.
Microbial linear plasmids   总被引:6,自引:0,他引:6  
While plasmids were originally considered to be generally circular until almost two decades ago, linear elements were reported to exist as well. They are now known to be common genetic elements in both, pro- and eukaryotes. Two types of linear plasmids exist, the so-called hairpin plasmids with covalently closed ends and those with proteins bound to their 5′ termini. Hairpin plasmids are common in human-pathogenic Borrelia spirochetes, in which they are instrumental in escape from the immunological response; cryptic hairpin elements are present in mitochondria of the plant pathogenic fungus Rhizoctonia solani. Plasmids with 5′ attached proteins constitute the largest group. In actinomycetous bacteria they are conjugative and usually confer advantageous phenotypes, e.g. formation of antibiotics, degradation of xenobiotics, heavy-metal resistance and growth on hydrogen as the sole energy source. In contrast, the majority of linear plasmids from eukaryotes are cryptic, with only a few exceptions. In some yeasts a killer phenotype may be associated, the most thoroughly investigated elements being those from Kluyveromyces lactis killer strains. In Neurospora spp. and in Podospora anserina, senescence and longevity respectively are correlated with linear plasmids. This review focuses on the biology of linear plasmids, their environmental significance and their use as tools in molecular and applied microbiology. Received: 15 November 1996 / Received revision: 23 December 1996 / Accepted: 30 December 1996  相似文献   

12.
To analyse the significance of conjugative broad-host-range IncP-1α plasmids for the spread of antibiotic resistance determinants in waste-water treatment plants we isolated and characterised five different IncP-1α plasmids from bacteria of activated sludge and the final effluents of a municipal waste-water treatment plant. These plasmids mediate resistance to ampicillin, cefaclor, cefuroxime, gentamicin, kanamycin, spectinomycin, streptomycin, tetracycline, tobramycin, and trimethoprim. The complete 68,869 bp DNA-sequence of the IncP-1α plasmid pTB11 was determined. The pTB11 backbone modules for replication (Rep), mating pair formation (Trb), multimer resolution (Mrs), post-segregational killing (Psk), conjugative DNA-transfer (Tra), plasmid control (Ctl), and stable maintenance and inheritance (KilA, KilE, and KilC) are highly conserved as compared to the ‘Birmingham’ IncP-1α plasmids. In contrast to the ‘Birmingham’ plasmids pTB11 carries an insert of a Tn402-derivative integrating a class 1 integron in the intergenic region between the multimer resolution operon parCBA and the post-segregational killing operon parDE. The integron comprises the resistance gene cassettes oxa2 (β-lactamase), aacA4 (aminoglycoside-6′N-acetyltransferase), and aadA1 (aminoglycoside-3′-adenylyltransferase) and a complete tniABQR transposition module. Integron-specific sequences were also identified on other IncP-1α plasmids analysed in this work. In contrast to the ‘Birmingham’ plasmids the pTB11 tetracycline resistance module carries a pecM- and a pncA-like gene downstream of the tetracycline resistance gene tetA and contains an insertion of the new insertion sequence element ISTB11. The transposable elements IS21 and Tn1 which disrupted, respectively, orf7 and klcB on the ‘Birmingham’ plasmids are not present on pTB11. Identification of IncP-1α plasmids in bacteria of the waste-water treatment plant’s final effluents indicates that bacteria carrying these kind of plasmids are released into the environment.  相似文献   

13.
The molecular properties of the plasmids of a natural isolate ofSalmonella panama have been studied. This strain, Sp477, harbours 5 different plasmids: the conjugative plasmid pRI477TF (molecular weight 20 megadaltons), the two non-conjugative plasmids, pRI477A and pRI477S, coding for ampicillin and streptomycin plus sulfonamide resistance respectively (molecular weights of both 5.6 megadaltons) and two cryptic plasmids with molecular weights of 1.0 and 2.7, megadaltons respectively. After conjugal transfer toEscherichia coli the ampicillin resistance determinant was frequently found to be integrated into pRI477TF or pRI477S. The translocatable sequence on pRI477A, designated as Tn901, resembles the TnA subclass transposon TnA(1).  相似文献   

14.
15.
Gene transfer within bacterial communities has been recognized as a major contributor in the recent evolution of antibiotic resistance on a global scale. The linked strA-strB genes, which encode streptomycin-inactivating enzymes, are distributed worldwide and confer streptomycin resistance in at least 17 genera of gram-negative bacteria. Nucleotide sequence analyses suggest that strA-strB have been recently disseminated. In bacterial isolates from humans and animals, strA-strB are often linked with the sulII sulfonamide-resistance gene and are encoded on broad-host-range nonconjugative plasmids. In bacterial isolates from plants, strA-strB are encoded on the Tn3-type transposon Tn5393 which is generally borne on conjugative plasmids. The wide distribution of the strA-strB genes in the environment suggests that gene transfer events between human, animal, and plant-associated bacteria have occurred. Although the usage of streptomycin in clinical medicine and animal husbandry has diminished, the persistence of strA-strB in bacterial populations implies that factors other than direct antibiotic selection are involved in maintenance of these genes.  相似文献   

16.
Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes.  相似文献   

17.

Background  

In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria.  相似文献   

18.
19.
Plasmid-carrying Pseudomonas putida strains degrade naphthalene through different biochemical pathways. The influence of various combinations of host bacteria and plasmids on growth characteristics and competitiveness of P. putida strains was studied in chemostat culture at a low dilution rate (D=0.05 h−1) with naphthalene as the sole source of carbon and energy. Under naphthalene limitation, the plasmid-bearing strains degrading naphthalene that use catechol 1,2-dioxygenase for catechol oxidation (ortho pathway), were the most competitive. The strains bearing plasmids that control naphthalene catabolism via catechol 2,3-dioxygenase (meta pathway), were less competitive. Under these conditions the strain carrying plasmid pBS4, which encodes for naphthalene catabolism via gentisic acid, was the least competitive. Received: 24 February 1997 / Received revision: 22 May 1997 / Accepted: 25 May 1997  相似文献   

20.
The use of genetically engineered bacteria in natural environments constitutes a risk of transfer of recombinant DNA to the indigenous bacteria. However, chromosomal genes are believed to be less likely to transfer than genes on mobilizable and conjugative plasmids. To study this assumption, horizontal transfer of a recombinant gene cassette inserted into the chromosome of a Pseudomonas stutzeri strain, into a mobilizable plasmid (pAGM42), and into a conjugative plasmid (pKJK5) isolated from barley rhizosphere was investigated. Horizontal transfer efficiencies of the gene cassette inserted into a conjugative plasmid was 8.20 × 10−3 transconjugants/(donors × recipients)1/2 in the rhizosphere and 4.57 × 10−2 transconjugants/(donors × recipients)1/2 in the spermosphere. Mobilization of the plasmid pAGM42 by the plasmids RP4 and pKJK5 was also detected at high levels in the microcosms, transfer efficiencies were up to 4.36 × 10−3 transconjugants/(donors × recipients)1/2. Transfer of chromosomal encoded genes could not be detected in the microcosms by conjugation or transformation. However, transformation did occur by using the same bacterial strains under laboratory conditions. The rhizosphere and especially the spermosphere thus proved to be hot spot environments providing favorable conditions for gene transfer by mobilization and conjugation, but these environments did not support transformation at a detectable level. Received: 21 July 2000 / Accepted: 21 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号