首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97(A232E), having three times higher activity. Further mutagenesis of p97(A232E) shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97(A232E) suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive.  相似文献   

2.
p97, a Mg-ATPase belonging to the AAA (ATPase associated with various cellular activities) super family of proteins, has been proposed to function in two distinct cellular pathways, namely homotypic membrane fusion and ubiquitin protein degradation by utilizing differing adaptor complexes. We present the cryo-electron microscopy three-dimensional reconstruction of endogenous p97 in an AMP-PNP bound state at 24 A resolution. It reveals clear nucleotide-dependent differences when compared to our previously published "p97-ADP" reconstruction, including a striking rearrangement of N domains and a positional change of the two ATPase domains, D1 and D2, with respect to each other. The docking of the X-ray structure of N-D1 domains in an ADP bound state indicates that an upward repositioning of N domain is necessary to accommodate the cryo-EM map of "p97-AMP-PNP", suggesting a change in the orientation of N domains upon nucleotide hydrolysis. Furthermore, computational analysis of the deformational motions of p97, performed on the cryo-EM density map and the atomic structure of the N-D1 domains independently, shows the existence of a negative cooperativity between the D1 and D2 rings and the flexibility of the N domains. Together these results allow the identification of functionally important features that offer molecular insights into the dynamics of the proposed p97 chaperone function.  相似文献   

3.
Mutations in p97, a major cytosolic AAA (ATPases associated with a variety of cellular activities) chaperone, cause inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). IBMPFD mutants have single amino‐acid substitutions at the interface between the N‐terminal domain (N‐domain) and the adjacent AAA domain (D1), resulting in a reduced affinity for ADP. The structures of p97 N–D1 fragments bearing IBMPFD mutations adopt an atypical N‐domain conformation in the presence of Mg2+·ATPγS, which is reversible by ADP, showing for the first time the nucleotide‐dependent conformational change of the N‐domain. The transition from the ADP‐ to the ATPγS‐bound state is accompanied by a loop‐to‐helix conversion in the N–D1 linker and by an apparent re‐ordering in the N‐terminal region of p97. X‐ray scattering experiments suggest that wild‐type p97 subunits undergo a similar nucleotide‐dependent N‐domain conformational change. We propose that IBMPFD mutations alter the timing of the transition between nucleotide states by destabilizing the ADP‐bound form and consequently interfere with the interactions between the N‐domains and their substrates.  相似文献   

4.
Complex cellular processes are driven by the regulated assembly and disassembly of large multiprotein complexes. While we are beginning to understand the molecular mechanism for assembly of the eukaryotic DNA replication machinery (replisome), we still know relatively little about the regulation of its disassembly at replication termination. Recently, the first elements of this process have emerged, revealing that the replicative helicase, at the heart of the replisome, is polyubiquitylated prior to unloading and that this unloading requires p97 segregase activity. Two different E3 ubiquitin ligases have now been shown to ubiquitylate the helicase under different conditions: Cul2Lrr1 and TRAIP. Here, using Xenopus laevis egg extract cell-free system and biochemical approaches, we have found two p97 cofactors, Ubxn7 and Faf1, which can interact with p97 during replisome disassembly during S-phase. We show only Ubxn7, however, facilitates efficient replisome disassembly. Ubxn7 delivers this role through its interaction via independent domains with both Cul2Lrr1 and p97 to allow coupling between Mcm7 ubiquitylation and its removal from chromatin. Our data therefore characterize Ubxn7 as the first substrate-specific p97 cofactor regulating replisome disassembly in vertebrates and a rationale for the efficacy of the Cul2Lrr1 replisome unloading pathway in unperturbed S-phase.  相似文献   

5.
6.
IIAGlc, the glucose-specific phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system, is an allosteric inhibitor of Escherichia coli glycerol kinase. A linked-functions initial-velocity enzyme kinetics approach is used to define the MgATP-IIAGlc heterotropic allosteric interaction. The interaction is measured by the allosteric coupling constants Q and W, which describe the mutual effect of the ligands on binding affinity and the effect of the allosteric ligand on Vmax, respectively. Allosteric interactions between these ligands display K-type activation and V-type inhibition. The allosteric coupling constant Q is about 3, showing cooperative coupling such that each ligand increases the affinity for binding of the other. The allosteric coupling constant W is about 0.1, showing that the allosteric inhibition is partial such that binding of IIAGlc at saturation does not reduce Vmax to zero. E. coli glycerol kinase is a member of the sugar kinase/heat shock protein 70/actin superfamily, and an element of the superfamily conserved ATPase catalytic core was identified as part of the IIAGlc inhibition network because it is required to transplant IIAGlc allosteric control into a non-allosteric glycerol kinase [A.C. Pawlyk, D.W. Pettigrew, Proc. Natl. Acad. Sci. USA 99 (2002) 11115-11120]. Two of the amino acids at this locus of E. coli glycerol kinase are replaced with those from the non-allosteric enzyme to enable determination of its contributions to MgATP-IIAGlc allosteric coupling. The substitutions reduce the affinity for IIAGlc by about 5-fold without changing significantly the allosteric coupling constants Q and W. The insensitivity of the allosteric coupling constants to the substitutions may indicate that the allosteric network is robust or the locus is not an element of that network. These possibilities may arise from differences of E. coli glycerol kinase relative to other superfamily members with respect to oligomeric structure and location of the allosteric site in a single domain far from the catalytic site.  相似文献   

7.
Experimental data on resistance mechanisms of multiple myeloma (MM) to ixazomib (IXA), a second-generation proteasome inhibitor (PI), are currently lacking. We generated MM cell lines with a 10-fold higher resistance to IXA as their sensitive counterparts, and observed cross-resistance towards the PIs carfilzomib (CFZ) and bortezomib (BTZ). Analyses of the IXA-binding proteasome subunits PSMB5 and PSMB1 show increased PSMB5 expression and activity in all IXA-resistant MM cells, and upregulated PSMB1 expression in IXA-resistant AMO1 cells. In addition, sequence analysis of PSMB5 revealed a p.Thr21Ala mutation in IXA-resistant MM1.S cells, and a p.Ala50Val mutation in IXA-resistant L363 cells, whereas IXA-resistant AMO1 cells lack PSMB5 mutations. IXA-resistant cells retain their sensitivity to therapeutic agents that mediate cytotoxic effects via induction of proteotoxic stress. Induction of ER stress and apoptosis by the p97 inhibitor CB-5083 was strongly enhanced in combination with the PI3Kα inhibitor BYL-719 or the HDAC inhibitor panobinostat suggesting potential therapeutic strategies to circumvent IXA resistance in MM. Taken together, our newly established IXA-resistant cell lines provide first insights into resistance mechanisms and overcoming treatment strategies, and represent suitable models to further study IXA resistance in MM.  相似文献   

8.
Mutations in p53 are strongly associated with several highly malignant cancer phenotypes but its role in regulating energy metabolism has not been completely elucidated. The effect on glycolysis and oxidative phosphorylation (OxPhos) of mutant p53R248Q overexpression in HeLa cells (HeLa-M) was analyzed and compared with cells overexpressing wild-type p53 (HeLa-H) and nontransfected cells containing negligible p53 levels (HeLa-L). p53 R248Q overexpression induced early cell detachment during in vitro growth; however, detached HeLa-M cells showed high viability, shorter generation time and significant diminution in the adhesion proteins E-cadherin and β-catenin versus HeLa-H and HeLa-L cells. Under normoxia, a lower growth rate of attached HeLa-M cells correlated with decreased levels of proliferating cell nuclear antigen (PCNA), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), adenosine monophosphate-activated protein kinase (AMPK), mitochondrial proteins (20–80%) and OxPhos flux (69 ± 12%). On the contrary, HeLa-M also showed increased contents of CDKN1A, nuclear factor κB (NF-κB), c-MYC, hypoxia-inducible factor 1-α (HIF-1α; 1–4 times), glycolytic HIF-1α targets (2–4 times), and glycolysis flux (2-fold) versus HeLa-H. In consequence, glycolysis provided ~70% of the cellular adenosine triphosphate (ATP) in HeLa-M cells under normoxia whereas, OxPhos predominated (65–82%) in HeLa-H and HeLa-L cells. Pifithrin-α, a specific p53 inhibitor, did not alter the p53 R248Q target protein contents and OxPhos and glycolytic fluxes, and a poor HIF-1α-p53 R248Q interaction was attained, in HeLa-M cells. These observations suggested that p53 R248Q deficiently interacted with pifithrin-α and HIF-1α. Therefore, lower mitochondrial biogenesis, deficient HIF-1α/mutant p53 interaction, and development of a pseudohypoxic state under normoxia were the apparent biochemical mechanisms underlying glycolysis activation and OxPhos downregulation in HeLa-M cells.  相似文献   

9.
The human AAA ATPase p97 is a molecular chaperone essential in cellular proteostasis. Single amino acid substitutions in p97 have been linked to a clinical multiple-disorder condition known as inclusion body myopathy associated with Paget''s disease of the bone and frontotemporal dementia. How the mutations affect the molecular mechanism that governs the function of p97 remains unclear. Here, we show that within the hexameric ring of a mutant p97, D1 domains fail to regulate their respective nucleotide-binding states, as evidenced by the lower amount of prebound ADP, weaker ADP binding affinity, full occupancy of adenosine-5′-O-(3-thiotriphosphate) binding, and elevated overall ATPase activity, indicating a loss of communication among subunits. Defective communication between subunits is further illustrated by altered conformation in the side chain of residue Phe-360 that probes into the nucleotide-binding pocket from a neighboring subunit. Consequently, conformations of N domains in a hexameric ring of a mutant p97 become uncoordinated, thus impacting its ability to process substrate.  相似文献   

10.
The p97 AAA (ATPase associated with diverse cellular activities), also called VCP (valosin-containing protein), is an important therapeutic target for cancer and neurodegenerative diseases. p97 forms a hexamer composed of two AAA domains (D1 and D2) that form two stacked rings and an N-terminal domain that binds numerous cofactor proteins. The interplay between the three domains in p97 is complex, and a deeper biochemical understanding is needed in order to design selective p97 inhibitors as therapeutic agents. It is clear that the D2 ATPase domain hydrolyzes ATP in vitro, but whether D1 contributes to ATPase activity is controversial. Here, we use Walker A and B mutants to demonstrate that D1 is capable of hydrolyzing ATP and show for the first time that nucleotide binding in the D2 domain increases the catalytic efficiency (kcat/Km) of D1 ATP hydrolysis 280-fold, by increasing kcat 7-fold and decreasing Km about 40-fold. We further show that an ND1 construct lacking D2 but including the linker between D1 and D2 is catalytically active, resolving a conflict in the literature. Applying enzymatic observations to small-molecule inhibitors, we show that four p97 inhibitors (DBeQ, ML240, ML241, and NMS-873) have differential responses to Walker A and B mutations, to disease-causing IBMPFD mutations, and to the presence of the N domain binding cofactor protein p47. These differential effects provide the first evidence that p97 cofactors and disease mutations can alter p97 inhibitor potency and suggest the possibility of developing context-dependent inhibitors of p97.  相似文献   

11.
A member of the family of ATPases associated with diverse cellular activities, called p97 in mammals and Cdc48 in yeast, associates with the cofactor Ufd1-Npl4 to move polyubiquitinated polypeptides from the endoplasmic reticulum (ER) membrane into the cytosol for their subsequent degradation by the proteasome. Here, we have studied the mechanism by which the p97-Ufd1-Npl4 complex functions in this retrotranslocation pathway. Substrate binding occurs when the first ATPase domain of p97 (D1 domain) is in its nucleotide-bound state, an interaction that also requires an association of p97 with the membrane through its NH2-terminal domain. The two ATPase domains (D1 and D2) of p97 appear to alternate in ATP hydrolysis, which is essential for the movement of polypeptides from the ER membrane into the cytosol. The ATPase itself can interact with nonmodified polypeptide substrates as they emerge from the ER membrane. Polyubiquitin chains linked by lysine 48 are recognized in a synergistic manner by both p97 and an evolutionarily conserved ubiquitin-binding site at the NH2 terminus of Ufd1. We propose a dual recognition model in which the ATPase complex binds both a nonmodified segment of the substrate and the attached polyubiquitin chain; polyubiquitin binding may activate the ATPase p97 to pull the polypeptide substrate out of the membrane.  相似文献   

12.
The vitally important AAA (ATPases associated with various cellular activities) protein p97 is involved in cellular functions ranging from replication to degradation of misfolded proteins and has recently been proposed as a novel chemotherapeutic target. p97 is a large molecular machine that has been shown to hexamerize in vitro, with each monomer consisting of an N domain responsible for binding to effector proteins and two AAA repeats (D1 and D2). However, structural studies are inconclusive or in disagreement with one another on several important features such as the locations of the N domains, the relative orientations of the D1 and D2 rings, and the dimensions of the central pore. Here, we present atomic-scale simulations of the p97 hexamer in the prehydrolysis, transition, and post-hydrolysis states. To improve the agreement between low- and high-resolution experimental studies, we first use a biased simulation technique, molecular dynamics flexible fitting (MDFF), to improve the correlation between the structures described in these experiments. We follow this with extended, classical molecular dynamics simulations, which not only show that structures generated in the MDFF phase are stable, but reveal insights into the dynamics important to each state. Simulation results suggest a hybrid model for hydrolysis, in which the N and D2 domains are dynamic while the D1 domains are relatively static, salt bridges stabilize the position of the N domains in the pre-hydrolysis state, and the rings formed by D1 and D2 rotate relative to one another.  相似文献   

13.
p97/VCP is a member of the AAA ATPase family and has roles in both membrane fusion and ubiquitin dependent protein degradation. Here, we present a 3.6A crystal structure of murine p97 in which D2 domain has been modelled as poly-alanine and the remaining approximately 100 residues are absent. The resulting structure illustrates a head-to-tail packing arrangement of the two p97 AAA domains in a natural hexameric state with D1 ADP bound and D2 nucleotide free. The head-to-tail packing arrangement observed in this structure is in contrast to our previously predicted tail-to-tail packing model. The linker between the D1 and D2 domains is partially disordered, suggesting a flexible nature. Normal mode analysis of the crystal structure suggests anti-correlated motions and distinct conformational states of the two AAA domains.  相似文献   

14.
Three common CFTR polymorphisms, 5T, M470V, and R75Q, have been shown to be relatively frequent in Serbian patients with monosymptomatic CF disorders. Since there is a variation in distribution of common polymorphisms among different populations, it was important to compare their frequencies in patients with the frequencies in healthy population in order to assess the possible role of these polymorphisms in the monosymptomatic CF disorders. Samples obtained from 100 healthy Serbian individuals were analyzed for the presence of CFTR 5T, M470V, and R75Q variants by PSM, RFLP, and DGGE methods, respectively. Allele 5T was present in two individuals, giving the allelic frequency of 1% (2/200 alleles). The frequency obtained for allele M470 was 45% (90/200 alleles), while V470 allele was present with the frequency of 55% (110/200 alleles). Polymorphism R75Q was present in two individuals, with allelic frequency of 1% (2/200 alleles). Our study has shown that the frequencies of two common polymorphisms, 5T and M470V, differ significantly in Serbian population in comparison with other Southern European populations. Since it appears that Serbian population has a specific distribution of studied CFTR gene variants, it would also be interesting to analyze other common variants of this gene in our population. Such data can also be potentially useful as anthropogenic markers in population studies. The text was submitted by the authors in English.  相似文献   

15.
Valosine containing protein (VCP/p97) is a member of the AAA ATPase family involved in several essential cellular functions and plays an important role in the ubiquitin-mediated degradation of misfolded proteins. P97 has a significant role in maintaining the cellular protein homeostasis for tumor cell growth and survival and has been found overexpressed in many tumor types. No new molecule entities based on p97 target were approved in clinic. Herein, a series of novel pyrimidine structures as p97 inhibitors were designed and synthesized. After enzymatic evaluations, structure-activity relationships (SAR) were discussed in detailed. Among the screened compounds, derivative 35 showed excellent enzymatic inhibitory activity (IC50, 36?nM). The cellular inhibition results showed that compound 35 had good antiproliferative activity against the non-small cell lung cancer A549 cells (IC50, 1.61?μM). Liver microsome stability showed that the half-life of compound 35 in human liver microsome was 42.3?min, which was more stable than the control CB-5083 (25.8?min). The in vivo pharmacokinetic results showed that the elimination phase half-lives of compound 35 were 4.57?h for ig and 3.64?h for iv, respectively and the oral bioavailability was only 4.5%. These results indicated that compound 35 could be effective for intravenous treatment of non-small cell lung cancer.  相似文献   

16.
Heterozygous mutations in the human VCP (p97) gene cause autosomal-dominant IBMPFD (inclusion body myopathy with early onset Paget’s disease of bone and frontotemporal dementia), ALS14 (amyotrophic lateral sclerosis with or without frontotemporal dementia) and HSP (hereditary spastic paraplegia). Most prevalent is the R155C point mutation. We studied the function of p97 in the social amoeba Dictyostelium discoideum and have generated strains that ectopically express wild-type (p97) or mutant p97 (p97R155C) fused to RFP in AX2 wild-type and autophagy 9 knock-out (ATG9KO) cells. Native gel electrophoresis showed that both p97 and p97R155C assemble into hexamers. Co-immunoprecipitation studies revealed that endogenous p97 and p97R155C-RFP form heteromers. The mutant strains displayed changes in cell growth, phototaxis, development, proteasomal activity, ubiquitinylated proteins, and ATG8(LC3) indicating mis-regulation of multiple essential cellular processes. Additionally, immunofluorescence analysis revealed an increase of protein aggregates in ATG9KO/p97R155C-RFP and ATG9KO cells. They were positive for ubiquitin in both strains, however, solely immunoreactive for p97 in the ATG9KO mutant. A major finding is that the expression of p97R155C-RFP in the ATG9KO strain partially or fully rescued the pleiotropic phenotype. We also observed dose-dependent effects of p97 on several cellular processes. Based on findings in the single versus the double mutants we propose a novel mode of p97 interaction with the core autophagy protein ATG9 which is based on mutual inhibition.  相似文献   

17.
During endoplasmic reticulum (ER)-associated degradation, p97(VCP) is recruited to the ER membrane through interactions with transmembrane proteins, such as selenoprotein S (SelS), selenoprotein K (SelK), hrd1, and gp78. SelS has a single-spanning transmembrane domain and protects cells from ER stress-induced apoptosis through interaction with p97(VCP). The cytosolic tail of SelS consists of a coiled-coil domain, a putative VCP-interacting motif (VIM), and an unpronounced glycine- and proline-rich secondary structure. To understand the regulatory mechanism of SelS during ER stress, we investigated the interaction of the protein with p97(VCP) using mouse neuroblastoma cells and human embryonic kidney 293 cells. The SelS expression level increased when ER stress was induced. In addition, the effect of ER stress was enhanced, and recruitment of p97(VCP) to the ER membrane was inhibited in SelS knockdown cells. The effect of SelS knockdown was rescued by ectopic expression of SelS U188C. p97(VCP) interacted with SelS U188C and was recruited to the ER membrane. The expression of SelS[ΔVIM], which is a VIM deletion mutant of SelS, also showed both a recovery effect and an interaction with p97(VCP) in cells. However, mutants in which the proline residue positions 178 or 183 of SelS were changed to alanine or were deleted did not interact with p97(VCP). The proline mutants did not rescue ER stress in SelS knockdown cells. These results suggest that both Pro178 and Pro183 of SelS play important roles in the translocation of p97(VCP) to the ER membrane and protect cells from ER stress.  相似文献   

18.
Endotoxins activate Toll-like receptors and reprogram cells to be refractory to secondary exposure. Here we found that activation of different Toll-like receptors elicited a time- and dose-dependent increase in the levels of the protein phosphatase 2A catalytic subunit (PP2Ac) but not its partner A subunit. We purified the lipopolysaccharide-induced form of PP2A by chromatography plus immunoprecipitation and used mass spectrometry to identify VCP/p97 as a novel partner for PP2Ac. Endogenous VCP/p97 and PP2Ac were co-immunoprecipitated from primary murine macrophages and human lymphocytes. GST-VCP/p97 bound purified PP2A in pulldown assays, showing direct protein-protein interaction. Endotoxin conditioning of macrophages induced formation of 3-nitrotyrosine in the PP2Ac associated with VCP/p97, a response severely reduced in macrophages from iNOS knock-out mice. The reaction of purified PP2A with peroxynitrite dissociated the A subunit, and 3-nitro-Tyr284 was identified in PP2Ac by mass spectrometry. Myc-PP2Ac (Y284F) expressed in cells was resistant to peroxynitrite-induced nitration and reduction of A subunit binding. Transient expression of either VCP/p97 or PP2Ac was sufficient to elevate levels of the dual specificity phosphatase DUSP1, reduce p38 MAPK activation, and suppress tumor necrosis factor-α release. We propose that VCP/p97-mediated Tyr nitration of PP2A increases the levels of phosphatases PP2A and DUSP1 to contribute to the refractory response of conditioned cells.  相似文献   

19.
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the “active” orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s−1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s−1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17–23 s−1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a “dormant” orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.  相似文献   

20.
A mutation within one allele of the p53 tumor suppressor gene can inactivate the remaining wild-type allele in a dominant-negative manner and in some cases can exert an additional oncogenic activity, known as mutant p53 ‘gain of function'' (GOF). To study the role of p53 mutations in prostate cancer and to discriminate between the dominant-negative effect and the GOF activity of mutant p53, we measured, using microarrays, the expression profiles of three immortalized prostate epithelial cultures expressing wild-type, inactivated p53 or mutated p53. Analysis of these gene expression profiles showed that both inactivated p53 and p53R175H mutant expression resulted in the upregulation of cell cycle progression genes. A second group, which was upregulated exclusively by mutant p53R175H, was predominantly enriched in developmental genes. This group of genes included the Twist1, a regulator of metastasis and epithelial–mesenchymal transition (EMT). Twist1 levels were also elevated in metastatic prostate cancer-derived cell line DU145, in immortalized lung fibroblasts and in a subset of lung cancer samples, all in a mutant p53-dependent manner. p53R175H mutant bearing immortalized epithelial cells showed typical features of EMT, such as higher expression of mesenchymal markers, lower expression of epithelial markers and enhanced invasive properties in vitro. The mechanism by which p53R175H mutant induces Twist1 expression involves alleviation of the epigenetic repression. Our data suggest that Twist1 expression might be upregulated following p53 mutation in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号