首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
植食性昆虫与寄主植物通过协同进化形成了复杂的防御和反防御机制.本文系统综述了昆虫唾液效应子和激发子在植物与昆虫互作中的作用及机理.昆虫取食中释放的唾液激发子被植物识别而激活植物早期免疫反应,昆虫也能从口腔分泌效应子到植物体内抑制免疫;抗性植物则利用抗性(R)蛋白识别昆虫无毒效应子,启动效应子诱导的免疫反应,而昆虫又进化...  相似文献   

2.
植食性昆虫适应植物防御反应的研究进展   总被引:1,自引:0,他引:1  
在植物与植食性昆虫协同进化过程中,植物在不断完善其防御反应,同时植食性昆虫也在选择压下不断适应植物防御反应。植食性昆虫适应植物防御反应存在多样性。昆虫能够利用其唾液中的效应因子抑制或弱化植物防御反应,激活其肠道中的某些特异性蛋白阻断植物防御性次生代谢物的产生或者将其直接降解,以及通过其携带微生物间接抑制植物防御反应。此外,昆虫还能够通过产卵、虫害诱导植物挥发物、识别植物防御物质等方式适应植物的防御反应。本文综述了植食性昆虫如何利用各种效应因子适应寄主植物防御反应的研究进展。  相似文献   

3.
4.
崔洪莹  苏建伟  戈峰 《昆虫知识》2011,48(5):1130-1140
臭氧(O3)是最具危害性的空气污染物之一。目前流层中的臭氧水平从100多年前的10ppb到今天的40ppb,预计到2050年将达到68ppb左右。臭氧通过改变植物"质量"而影响植食性昆虫的取食偏嗜性、行为、生长和发育,进而影响天敌昆虫的适合度。臭氧还通过改变化学信息物质而影响昆虫的行为。本文根据国内外研究进展,结合作者的研究,论述了大气臭氧浓度升高对刺吸式昆虫、咀嚼式昆虫和天敌昆虫的影响,展望了未来研究的前景。  相似文献   

5.
植物与植食性昆虫之间存在着复杂的化学相互作用。一方面,当遭受植食性昆虫为害时,植物能识别植食性昆虫相关分子模式,触发早期信号事件和激素信号转导途径,并由此引起转录组与代谢组重组、直接和间接防御化合物含量升高,最后提高对植食性昆虫的抗性。另一方面,植食性昆虫也能识别植物的防御反应,并能通过分泌效应子、选贮、解毒以及降低敏感性等反防御措施抑制或适应植物的化学防御。深入剖析植物与植食性昆虫的化学互作,不仅可在理论上丰富对昆虫与植物互作关系的理解,而且可在实践上为作物害虫防控新技术的开发提供重要的理论与技术指导。  相似文献   

6.
植食性刺吸式昆虫的取食行为   总被引:2,自引:0,他引:2  
  相似文献   

7.
植物与植食性昆虫、植食性昆虫与昆虫杆状病毒之间的两营养级互作关系,至今已有超过半个世纪的研究历史,但这三营养级的互作研究,在近20年才引起科学家的兴趣。在查阅并理解国内外相关文献的基础上,本文主要从植物的物理性状、营养物质和次生代谢物质三个角度出发,剖析植物调控昆虫响应病毒感染的生态生理及免疫机制,阐明植物影响病毒增殖、病毒组分及其感染过程和致病力的机理。此外,本文就植物、植食性昆虫和昆虫杆状病毒互作的研究方向、研究方法,进行了初步展望,以期为更好研究多营养级共存系统的食物网关系,提供理论依据。  相似文献   

8.
植食性昆虫与寄主植物关系的本质是化学。植食性昆虫搜寻寄主的嗅觉媒介是植物气味即化学信息物质。在介绍植物气味构成及其扩散模型基础上,阐述了植物气味在地上植食性昆虫成虫、幼虫和地下植食性昆虫搜寻寄主过程中的嗅觉导向作用,并指出了今后相关研究需要注意的问题。从植物与环境因子的关系来看,植物气味包括构成性气味和诱发性气味两类,这两类气味的概念既相联系而又不同。构成性气味组分及构成因植物分类地位等而不同。诱发性气味组分因植食性昆虫取食、植物病原微生物、机械致伤等因子的胁迫而变化,这种变化性状随植物属和/或种、植株生长发育阶段、胁迫因子性质及其作用方式而不同。无论是哪种植物气味,其释放均具有节律性。气味扩散过程比较复杂,扩散状态可用数学模型表征。对于地上植食性昆虫成虫,植物气味对其寄主搜寻行为具有导向特异性,重点分析了这种特异性形成的两个假说;鳞翅目昆虫幼虫,能够利用植物化学信息物质趋向寄主植物或回避非寄主植物;地下植食性昆虫搜寻寄主,既与寄主植物地下组织释放或分泌的次级代谢物有关,又与一些初级代谢物有关。初级代谢物中的CO2,起着“搜寻触发器”作用。有助于增强人们对昆虫与植...  相似文献   

9.
植食性昆虫对植物的反防御机制   总被引:9,自引:0,他引:9  
本文综述了植食性昆虫对植物的反防御机制.一方面,植食性昆虫可通过其快速进化的寄主选择适应性,改变取食策略,调节生长发育的节律,以及规避自然天敌等抑制、逃避或改变植物的防御,即行为防御机制;另一方面,植食性昆虫可适应植物蛋白酶抑制剂、逃避植物防御伤信号、解毒植物次生物质,以及抑制植物阻塞反应来对植物防御进行反防御,即生理和生化防御机制.其中,昆虫抑制植物伤信号,防止植物阻塞反应是反防御机制的研究热点.昆虫反防御的研究有助于提高对昆虫-植物间协同进化关系的认识,并为害虫治理和抗虫植物的培育提供新的思路.  相似文献   

10.
重金属污染是世界各国面临的最为棘手的问题之一,对生态系统和食品安全构成了严重威胁。作为生态系统中食物链和食物网的重要环节,植食性昆虫是环境中重金属迁移、积累的重要媒介,其因重金属污染而受到的影响引起了大家的关注。本文综述了从2007至2018年重金属污染对植食性昆虫影响的研究进展。昆虫受重金属胁迫的研究途径有人工饲料添加、野外田间暴露、“土壤-植物-昆虫”食物链传递以及体外注射等。积累在植食性昆虫体内的过量重金属可导致其存活率、繁殖力和种群增长率降低,生长发育迟缓。重金属污染对植食性昆虫的生理生化毒性包括细胞超微结构破坏和DNA损伤,体内能量物质含量降低,酶活性、基因表达改变等。植食性昆虫会通过重金属硫蛋白、解毒酶活性的诱导等机制抵御重金属的毒害,从而对低浓度、长期重金属暴露产生生态适应性,甚至提高对其他逆境(如农药等)的耐受性。  相似文献   

11.
EPG即时显示软件Realdisplay的开发和利用   总被引:2,自引:0,他引:2  
研究和开发在刺吸式植食性昆虫取食行为研究中,刺吸电位技术(EPG)的一种新的应用软件Realdisplay。该软件可任意选择EPG信号采集频率和显示的通道数,也可以在同一屏幕上同时以不同的信号采焦频率即时清晰地显示1个通道的EPG信号,使研究者能准确地了解和控制昆虫的即时行为细节。此外,该软件存储的EPG信息为实验过程中每一时刻的电热值,因而后续分析和统计极为方便。因此,Realdisplay强化了EPG技术的功能,拓宽了EPG技术的应用领域。为研究刺吸式植食性昆虫的取食行为细节,昆虫与病毒、宿主植物的关系提供了有力的工具。  相似文献   

12.
寄主植物与昆虫在长期协同进化中形成了复杂的防御和反防御机制。本文系统综述了寄主植物与刺吸式昆虫互作防御的过程与机制。刺吸式昆虫利用特化的口针,吸食寄主植物组织汁液时,植物通过细胞膜表面或细胞内受体感知昆虫取食信号,并经过丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路、植物激素信号通路、钙离子信号通路、转录因子调控、Rop/Rac GTPase信号通路、活性氧(reactive oxygen species, ROS)通路等信号转导通路激活植物免疫。为了阻止害虫进一步取食,寄主植物形成了增强的物理屏障,并诱导产生次生代谢物、抗营养酶类、抗消化酶类和胼胝质沉积及释放挥发物等多种防御机制。在与寄主植物“博弈”的过程中,刺吸式昆虫往往会利用其取食时分泌的唾液成分,靶向植物靶标蛋白,通过破坏宿主植物的物理屏障,或抑制宿主植物的抗性信号转导,或抑制宿主次生代谢物的毒害作用,或通过跨界RNA和水平基因转移等方式抑制植物的防御反应,从而达到继续取食为害的目的。此外,基于植物与病原菌互作模式,结合寄主植物与刺吸式昆虫互作研究进展,总结了寄主植物...  相似文献   

13.
植物与植食性昆虫防御与反防御的三个层次   总被引:3,自引:0,他引:3  
在植物与植食性昆虫长期的进化过程中,双方形成了一系列的防御与反防御策略。本文将这些策略归为3个层次:第一层次起始于植物对植食性昆虫相关分子模式的识别,并由此激活植食性昆虫分子模式相关的免疫反应。这种免疫反应对于不能产生效应子的植食性昆虫种群是有效的;第二层次是一些植食性昆虫种群可以通过释放特异性效应子抑制植物产生的植食性昆虫分子模式相关的免疫反应,从而在植物上正常生长与繁衍;第三层次是一些植物基因型可以通过特异抗性基因识别植食性昆虫的效应子,进而激活效应子诱导的免疫反应,表现出特异的抗虫性。深入揭示植物与植食性昆虫间的这种分子互作机制,不仅在理论上有助于理解昆虫与植物的协同进化机制,而且在实践上可为作物抗性品种的培育提供重要的技术指导。  相似文献   

14.
植物和刺吸式口器昆虫的诱导防御与反防御研究进展   总被引:1,自引:0,他引:1  
刘勇  孙玉诚  王国红 《昆虫知识》2011,48(4):1052-1059
刺吸式口器昆虫在长期的进化过程中形成特殊的口针结构,用于专门吸食植物韧皮部筛管细胞的汁液成分.以蚜虫为例,它们在取食过程中分泌的胶状唾液和水状唾液将有效的降低植物防御反应,其中水状唾液包含的大量酶类不仅可以帮助蚜虫穿刺植物韧皮部,刺探到筛管细胞,同时也是植物感受蚜虫为害的激发因子,诱导出植物防御反应和相关抗性基因的表达...  相似文献   

15.
王鹏  张龙 《环境昆虫学报》2021,43(3):633-641
植食性昆虫的嗅觉在其选择食物的过程中发挥了重要的作用,它能通过对植物挥发物的感受来定向和定位食物源并产生趋近行为,进而根据特殊的化合物或者多种化合物的特异浓度组合来区分寄主和非寄主植物.在这个过程中,昆虫嗅觉器官上相关的嗅觉感受蛋白被植物挥发物激活,形成特异的嗅觉感受通路,在行为上调控昆虫嗅觉选食的能力.本文主要从植食...  相似文献   

16.
刺吸式昆虫次生内共生菌的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
蚜虫作为典型的刺吸式昆虫,需要以取食植物韧皮部汁液来补充营养,几乎所有蚜虫均带有一种能为其提供植物韧皮部缺失营养物质的初生共生菌Buchnera aphidicola。此外,蚜虫还可携带一种或多种次生内共生菌。在众多共生菌—寄主系统中,蚜虫与其所带内共生菌间的互作研究最为透彻。虽然次生内共生菌对寄主的存活和生殖影响并不显著,但其在寄主对环境耐受力、天敌防御能力等方面作用明显。本文在查阅大量蚜虫次生内共生菌相关文献的基础上,着重对蚜虫次生内共生菌的种类及传播规律、次生内共生菌对蚜虫表型的影响、蚜虫次生内共生菌基因组学等方面的研究现状进行综述,以求为刺吸式昆虫次生内共生菌的研究提供参考。  相似文献   

17.
彭露  严盈  万方浩  王进军 《昆虫知识》2010,47(5):1017-1020
以B型烟粉虱Bemisia tabaci(Gennadius)成虫为材料,介绍了一种微型刺吸式昆虫唾液酶鉴定和分析的方法,主要包括人工饲养、唾液收集、唾液多酚氧化酶(PPO)和过氧化物酶(POD)的鉴定与活性分析。结果显示,B型烟粉虱在特异性嗜好寄主甘蓝上分泌的多酚氧化酶与过氧化物酶的比活力分别为嗜好寄主番茄上的1.54和1.65倍。该方法操作简捷,鉴定结果直观清晰,酶活测定灵敏,适合于其他微型刺吸式昆虫如蚜虫、木虱等的唾液酶研究。  相似文献   

18.
唾液成分在刺吸式昆虫与植物关系中的作用   总被引:2,自引:0,他引:2  
严盈  刘万学  万方浩 《昆虫学报》2008,51(5):537-544
近年来,人们对刺吸式昆虫唾液成分的研究,揭示出其在刺吸式昆虫与植物关系中的重要作用。对多数刺吸式昆虫而言,他们取食时会分泌胶状和水状两种唾液,其中胶状唾液会在取食早期分泌形成唾液鞘来围绕并保护口针,通过直接和间接的作用来帮助取食;而水状唾液中则包含了果胶酶、纤维素酶、多酚氧化酶、过氧化物酶、碱性磷酸酯酶、蔗糖酶等组分,来帮助刺吸式昆虫对植物穿刺、消化食物、解毒次生物质并破坏植物的防御反应。有趣的是,唾液成分同时还可以诱导植物的防御反应,包括诱导植物的伤信号引起直接防御反应和诱导植物产生挥发物吸引植食者的天敌引起间接防御反应。并且,许多刺吸式昆虫取 食能够特异性地引发植物的病理反应,有研究推测刺吸式昆虫唾液中多聚半乳糖醛酸酶、碱性磷酸酯酶、蔗糖酶、多酚氧化酶等成分可能是某些植物特定病理反应的激发子,但是目前还没有定论,同时许多刺吸式昆虫唾液中的氨基酸和蛋白酶还是引起植物虫瘿的原因之一。 迄今的研究表明,刺吸式昆虫会根据不同的寄主植物和不同的生理需要,通过唾液组分的改变,来达到取食和发育的目的。对刺吸式昆虫唾液成分和作用机理的研究,可以为揭示刺吸式昆虫致害机理特别是传毒机理、指导害虫有效治理、阐明其与植物的协同进化等提供一定的思路。  相似文献   

19.
昆虫介体行为与植物病毒的传播   总被引:1,自引:0,他引:1  
大多数植物病毒都是依赖昆虫介体进行传播,其中超过80%的传毒介体昆虫都是属于半翅目同翅亚目。昆虫介体识别寄主植物和取食的过程与病毒的传播密切相关,本文主要综述了同翅亚目昆虫、蓟马等介体昆虫取食行为与植物病毒的相互作用方面的研究进展,着重于介绍昆虫不同取食阶段的行为对植物病毒传播的影响,病毒侵染对介体取食和识别寄主行为的影响。  相似文献   

20.
韧皮部取食昆虫诱导的植物防御反应   总被引:3,自引:0,他引:3  
刺吸式昆虫与寄主植物之间具有特殊的生物互作关系。本文对刺吸式昆虫取食韧皮部诱导的植物防御反应类型、 防御物质变化、 信号途径以及植物反应转录组学研究等方面进行综述。韧皮部取食昆虫取食诱导的植物防御反应机制主要包括: (1)改变自身的营养状况; (2)产生有毒的次生化合物; (3)产生防御蛋白。防御反应与植物水杨酸、 茉莉酸、 乙烯等信号分子密切相关。研究表明, 刺吸式昆虫取食诱导的植物防御反应主要引发以水杨酸为主的信号途径, 但相关分子互作机制还有待明确。日益丰富的基因组资源和不断发展的分子生物学技术为揭示植物防御反应中信号分子的作用机制、 找出植物内生抗性的特异因子以及阐明诱导防御机制奠定了基础。了解刺吸式昆虫取食诱导的植物防御反应, 为深入理解植物-昆虫间协同进化关系提供了依据, 为害虫治理和抗虫植物的培育提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号