首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Human T-cell leukemia virus type 1 (HTLV-1) immortalizes human CD4+ T lymphocytes in culture. Previous studies show that in the context of a herpesvirus saimiri vector, the sequence of the X region at the 3' end of the HTLV-1 genome is also capable of immortalizing CD4+ lymphocytes in the absence of HTLV-1 structural proteins. The X region of HTLV-1 encodes two trans-acting viral proteins, the 42-kDa Tax protein and the 27-kDa Rex protein. Infection of human cord blood cells with herpesvirus saimiri recombinants which contain HTLV-1 X region sequences defective for expression of tax, rex, or both tax and rex demonstrates that tax function is necessary and sufficient for immortalization of primary human CD4+ cord blood lymphocytes in culture in the context of the herpesvirus saimiri vector.  相似文献   

4.
5.
In adult T-cell leukemia (ATL) cells, a defective human T-cell leukemia virus type 1 (HTLV-1) provirus lacking the 5' long terminal repeat (LTR), designated type 2 defective provirus, is frequently observed. To investigate the mechanism underlying the generation of the defective provirus, we sequenced HTLV-1 provirus integration sites from cases of ATL. In HTLV-1 proviruses retaining both LTRs, 6-bp repeat sequences were adjacent to the 5' and 3' LTRs. In 8 of 12 cases with type 2 defective provirus, 6-bp repeats were identified at both ends. In five of these cases, a short repeat was bound to CA dinucleotides of the pol and env genes at the 5' end, suggesting that these type 2 defective proviruses were formed before integration. In four cases lacking the 6-bp repeat, short (6- to 26-bp) deletions in the host genome were identified, indicating that these defective proviruses were generated after integration. Quantification indicated frequencies of type 2 defective provirus of less than 3.9% for two carriers, which are much lower than those seen for ATL cases (27.8%). In type 2 defective proviruses, the second exons of the tax, rex, and p30 genes were frequently deleted, leaving Tax unable to activate NF-kappaB and CREB pathways. The HTLV-1 bZIP factor gene, located on the minus strand, is expressed in ATL cells with this defective provirus, and its coding sequences are intact, suggesting its significance in oncogenesis.  相似文献   

6.
To understand the mechanism of p56lck protein downregulation observed in human T cells infected by human T-cell leukemia virus type 1 (HTLV-1), we have investigated the ability of the 3' end of the HTLV-1 genome as well as that of the tax and rex genes to modulate p56lck protein expression and p56lck mRNA synthesis. By using Jurkat T cells stably transfected with constructs that expressed either the 3' end of the HTLV-1 genome (JK C11-pMTEX), the tax gene (JK52-Tax) or the rex gene (JK9-Rex), we found that the expression of p40tax (Tax) was sufficient to modulate p56lck protein expression. Similarly, we found that the expression of the mRNA which encoded p56lck was repressed in Jurkat T cells which expressed Tax. This downregulation was shown to be proportional to the amount of tax mRNA found in the transfected cells, as evidenced by experiments that used cells (JPX-9) stably transfected with a tax gene driven by a cadmium-inducible promoter. Furthermore, cadmium induction of Tax in JPX-9 cells transiently transfected with a construct containing the chloramphenicol acetyltransferase (CAT) gene under control of the lck distal promoter (lck DP-CAT) resulted in the downregulation of CAT gene expression. In contrast, cadmium induction of Tax in JPX-9 cells transiently transfected with a CAT construct driven by a lck DP with a deletion extending from position -259 to -253 (a sequence corresponding to a putative E-Box) did not modulate CAT gene expression, suggesting that the effect of Tax on p56lck is mediated through an E-Box binding protein.  相似文献   

7.
8.
9.
Ye J  Xie L  Green PL 《Journal of virology》2003,77(14):7728-7735
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8(+) T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.  相似文献   

10.
11.
CpG methylation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) has been implicated in proviral latency, but there is presently little information available regarding the pattern of LTR methylation and its effect on viral gene expression. To gain insight into the mechanisms of HTLV-1 latency, we have studied methylation of individual CpG sites in the U3-R region of the integrated proviral LTR by using bisulfite genomic sequencing methods. Surprisingly, our results reveal selective hypermethylation of the 5' LTR and accompanying hypomethylation of the 3' LTR in both latently infected cell lines and adult T-cell leukemia (ATL) cells having a complete provirus. Moreover, we observed a lack of CpG methylation in the LTRs of 5'-defective proviruses recovered from ATL samples, which is consistent with the selective hypomethylation of the 3' LTR. Thus, the integrated HTLV-1 provirus in these carriers appears to be hypermethylated in the 5' LTR and hypomethylated in the 3' LTR. These results, together with the observation that proviral gene expression is reactivated by 5-azacytidine in latently infected cell lines, indicate that selective hypermethylation of the HTLV-1 5' LTR is common both in vivo and in vitro. Thus, hypermethylation of the 5' LTR appears to be an important mechanism by which HTLV-1 gene expression is repressed during viral latency.  相似文献   

12.
13.
14.
15.
16.
We and others have uncovered the existence of human T-cell lymphotropic virus type 3 (HTLV-3). We have now generated an HTLV-3 proviral clone. We established that gag, env, pol, pro, and tax/rex as well as minus-strand mRNAs are present in cells transfected with the HTLV-3 clone. HTLV-3 p24(gag) protein is detected in the cell culture supernatant. Transfection of 293T-long terminal repeat (LTR)-green fluorescent protein (GFP) cells with the HTLV-3 clone promotes formation of syncytia, a hallmark of Env expression, together with the appearance of fluorescent cells, demonstrating that Tax is expressed. Viral particles are visible by electron microscopy. These particles are infectious, as demonstrated by infection experiments with purified virions.  相似文献   

17.
18.
In vivo infection of sheep by bovine leukemia virus mutants.   总被引:11,自引:9,他引:2       下载免费PDF全文
Direct inoculation of a cloned bovine leukemia virus (BLV) provirus into sheep has allowed study of the viral infectivity of genetic mutants in vivo. Three BLV variants cloned from BLV-induced tumors and 12 in vitro-modified proviruses were isolated and analyzed for viral expression in cell culture. The proviruses were then inoculated into sheep in order to assess viral infectivity in vivo. Of three variants cloned from BLV-induced tumors (344, 395, and 1345), one (344) was found infectious in vivo. This particular provirus was used to engineer 12 BLV mutants. A hybrid between the 5' region of the complete but noninfectious provirus 395 and the 3' end of mutant 344 was infectious in vivo, suggesting that the tax/rex sequences were altered in virus 395. As expected, several regions of the BLV genome appeared to be essential for viral infection: the protease, pol, and env genes. Even discrete modifications in the fusion peptide located at the NH2 end of the transmembrane gp30 glycoprotein destroyed the infectious potential. In contrast, mutations and deletions in the X3 region present between the env gene and the 3' tax/rex region did not interfere with viral infection in vivo. This region of unknown function could thus be used to introduce foreign sequences. A BLV recombinant carrying a ribozyme directed against the tax/rex sequences was still infectious in vivo. Cotransfection of two noninfectious mutants carrying deletions led to infection in two of four independent injections, the infectious virus being then a recombinant between the two deletants. The experimental approach described here should help to gain insight into essential mechanisms such as in vivo viral replication, cooperation between deletants for viral infectivity, and viral superinfections. The gene products in the X3 and X4 region which are dispensable for in vivo infection could be involved in leukemogenesis, and thus proviruses deleted in these sequences could constitute the basis for a live attenuated vaccine.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号